浙江大学学报(工学版), 2022, 56(3): 436-443 doi: 10.3785/j.issn.1008-973X.2022.03.002

机械工程、能源工程

基于改进切换增益自适应率的欠驱动USV滑模轨迹跟踪控制

于瑞,, 徐雪峰, 周华,, 杨华勇

1. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027

2. 天津航海仪器研究所九江分部,江西 九江,332007

Improved switching-gain adaptation based sliding mode control for trajectory tracking of underactuated unmanned surface vessels

YU Rui,, XU Xue-feng, ZHOU Hua,, YANG Hua-yong

1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China

2. Jiujiang Branch of Tianjin Navigation Instrument Research Institute, Jiujiang 332007, China

通讯作者: 周华,男,教授,博导. orcid.org/0000-0001-8375-3291. E-mail: hzhou@zju.edu.cn

收稿日期: 2021-04-30  

基金资助: 国家自然科学基金资助项目(51890885);国家重点研发计划资助项目(2018YFB2001203);国家自然科学基金创新研究群体项目(51821093)

Received: 2021-04-30  

Fund supported: 国家自然科学基金资助项目(51890885);国家重点研发计划资助项目(2018YFB2001203);国家自然科学基金创新研究群体项目(51821093)

作者简介 About authors

于瑞(1995—),男,博士生,从事机电系统集成与控制研究.orcid.org/0000-0002-7834-1740.E-mail:yuruismail@163.com , E-mail:yuruismail@163.com

摘要

针对参数的不确定性和外界干扰的非线性给欠驱动无人艇(USV)的精确轨迹跟踪控制带来的挑战,提出基于改进切换增益自适应率(ISGA)的欠驱动USV滑模轨迹跟踪控制算法. 该算法结合反步法和PI滑模控制,以保证欠驱动USV跟踪并保持期望的轨迹;采用基于理想增益的ISGA算法,以提高系统的鲁棒性和抑制滑模抖振现象. 借助李雅普诺夫直接法证明轨迹跟踪控制系统的全局指数稳定性. 仿真结果显示,所提算法具有鲁棒性强、滑模抖振弱和控制精度高等优点. 相较2种先进的轨迹跟踪控制算法,所提算法的位姿控制精度提高超过25.0%.

关键词: 欠驱动无人艇 ; 改进切换增益自适应率(ISGA) ; 滑模控制 ; 轨迹跟踪 ; 指数收敛

Abstract

An improved switching-gain adaptation (ISGA) based sliding mode control algorithm was proposed for trajectory tracking of underactuated unmanned surface vessels (USVs), aiming to the challenges which the parametric uncertainties and nonlinearity of disturbance bring to the precise trajectory tracking control of underactuated USVs. In the algorithm, the backstepping and PI sliding mode control were combined to ensure an underactuated USV tracking and maintain the desired trajectory. In addition, an ISGA algorithm based on ideal switching gain was adopted to improve the robustness and suppress the chattering phenomenon. The global exponential stability of the trajectory tracking system was verified by the Lyapunov’s direct method. Simulation results show that the algorithm has the advantages of strong robustness, weak chattering and high accuracy. Compared with the two state-of-the-art algorithms, the position-attitude control accuracy of the proposed algorithm is improved by more than 25.0%.

Keywords: underactuated unmanned surface vessels ; improved switching-gain adaptation(ISGA) ; sliding mode control ; trajectory tracking ; exponential convergence

PDF (1209KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

于瑞, 徐雪峰, 周华, 杨华勇. 基于改进切换增益自适应率的欠驱动USV滑模轨迹跟踪控制. 浙江大学学报(工学版)[J], 2022, 56(3): 436-443 doi:10.3785/j.issn.1008-973X.2022.03.002

YU Rui, XU Xue-feng, ZHOU Hua, YANG Hua-yong. Improved switching-gain adaptation based sliding mode control for trajectory tracking of underactuated unmanned surface vessels. Journal of Zhejiang University(Engineering Science)[J], 2022, 56(3): 436-443 doi:10.3785/j.issn.1008-973X.2022.03.002

欠驱动无人艇(unmanned surface vessel, USV)具有自主航行、运动灵活和环境适应能力强等特点,被广泛应用于编队巡航、军事侦察、目标搜索、海上气象预报和水文地理勘査等领域[1-5]. 实现欠驱动USV精准的轨迹跟踪控制面临以下难点:不可积分的非完整性约束、参数不确定性和外界干扰的非线性[6-9]. 对此,许多学者利用自适应控制[10-11]、神经网络控制[12-14]、反步法[15-16]和滑模控制[17-21]等方法展开相关研究. 然而,这些方法都存在局限性:自适应控制方法的鲁棒性有待提高,神经网络控制方法计算量大,反步法需要精确的模型参数.

滑模控制方法因简单易行、鲁棒性强的特点,在欠驱动USV的轨迹跟踪控制领域得到广泛的应用[17-21]. Ashrafiuon等[17]将滑模控制方法引入欠驱动船舶的轨迹跟踪问题中,实现直线和曲线轨迹的跟踪,但是该方法未考虑外界干扰的影响,且滑模面抖振严重. 随后,Xu等[18]基于外界干扰力连续可导的假设,结合PD滑模控制和反步法提出新型轨迹跟踪控制器,提高了系统的鲁棒性. 在此基础上,Sun等[19]基于USV速度变化缓慢的假设,结合PI滑模控制和自适应控制提出新型控制器,放宽了对环境干扰力连续可导的限制. 之后,Sun等[20]又提出带有参数估计的自适应滑模控制方法,放宽了横荡运动无源有界的假设.在上述滑膜控制方法中除文献[19]外,其他的方法未能实现全局指数稳定,鲁棒性有待提高[22-23]. 此外,上述滑模控制方法易引起抖振现象. 为了缓解抖振,一些学者从控制理论出发,对切换增益采取自适应调节[24-26].Qu等[24]提出新型的切换增益自适应率(switching-gain adaptation, SGA),不仅能提高收敛速度,还能缓解抖振现象. 因此,该方法被应用于光盘驱动器伺服系统[24]和有杆抽油系统[27],但是其不能实现全局指数稳定.

本研究提出基于改进SGA(improved SGA, ISGA)的欠驱动USV滑模轨迹跟踪控制算法,以提高系统鲁棒性、抑制滑模抖振. 同时,该算法结合反步法和PI滑模控制,以保证欠驱动USV跟踪并保持期望的轨迹.

1. 运动模型

图1所示,欠驱动USV的运动一般包含纵荡、横荡、垂荡、纵摇、横摇和艏摇,共6个部分.图中, $ {O_{\text{E}}} - {X_{\text{E}}}{Y_{\text{E}}}{Z_{\text{E}}} $为地面坐标系, $ {O_{\text{b}}} - {X_{\text{b}}}{Y_{\text{b}}}{Z_{\text{b}}} $为USV附体坐标系, $ {[x,y,z,\phi ,\theta ,\psi ]^{\text{T}}} $为USV在地面坐标系下的位置与姿态, $ {[u,v,w,p,q,r]^{\text{T}}} $为USV的线速度与角速度. 本研究为USV的平面运动,在建模过程中简化垂荡、纵摇和横摇[28-29]. 考虑参数不确定性和外界非线性干扰的影响,建立欠驱动USV的数学模型[30]

图 1

图 1   欠驱动无人艇的参考坐标系

Fig.1   Reference frames of underactuated USV


$ {\boldsymbol{\dot \eta }} = {\boldsymbol{J}}({\boldsymbol{\eta }}){\boldsymbol{v}}, $

$ {\boldsymbol{M\dot v}} = - {\boldsymbol{H}}({\boldsymbol{v}}) - {\boldsymbol{Dv}}{\text{ + }}{{\boldsymbol{U}}_{{\text{prop}}}}{{ + \Delta }}{\boldsymbol{U}}. $

式中: ${\boldsymbol{\eta }} = {[x,y,\psi ]^{\text{T}}}$为USV在地面坐标系下的平面运动位置与姿态, ${\boldsymbol{v}} = {[u,v,r]^{\text{T}}}$为USV的平面运动线速度和角速度, ${{\boldsymbol{U}}_{{\text{prop}}}} = {[F,0,T]^{\text{T}}}$为推进器提供的推力和力矩, ${{\Delta }}{\boldsymbol{U}} = {[{d_{\text{u}}},{d_{\text{v}}},{d_{\text{r}}}]^{\text{T}}}$为外界环境的干扰力. 转换矩阵 ${\boldsymbol{J}}({\boldsymbol{\eta }})$、惯性矩阵 ${\boldsymbol{M}}$、阻尼矩阵 ${\boldsymbol{D}}$${\boldsymbol{H}}({\boldsymbol{v}})$分别为

$ {\boldsymbol{J}}({\boldsymbol{\eta }}) = \left[ {\begin{array}{*{20}{c}} {\cos \psi }&{ - \sin \psi }&0 \\ {\sin \psi }&{\cos \psi }&0 \\ 0&0&1 \end{array}} \right], $

$ {\boldsymbol{M}} = {\text{diag}}\left( {m_{11}},{m_{22}},{m_{33}}\right) {\text{,}} $

$ {\boldsymbol{D}} = {\text{diag}}\left( {d_{11}},{d_{22}},{d_{33}}\right) , $

$ {\boldsymbol{H}}({\boldsymbol{v}}) = {\text{diag}}\left( - {m_{22}}vr,{m_{11}}ur,\left({m_{22}} - {m_{11}}\right)uv\right) . $

式中: $ {m_{ii}} $$ {d_{ii}} $分别为USV惯量矩阵和阻尼矩阵的未知数值, $ {m_{ii}} $${d_{ii}} > 0$,且满足 ${m_{11}} - {m_{22}} > 0$.

设定目标轨迹 ${{\boldsymbol{\eta }}_{\text{d}}} = {[{x_{\text{d}}},{y_{\text{d}}},{\psi _{\text{d}}}]^{\text{T}}}$,目标航向 ${\psi _{\text{d}}} = $ $ \arctan ({\dot y_{\text{d}}}/{\dot x_{\text{d}}})$. 设置跟踪误差为[16]

$ \left[ {\begin{array}{*{20}{c}} {{x_{\text{e}}}} \\ {{y_{\text{e}}}} \\ {{\psi _{\text{e}}}} \end{array}} \right]{\text{ = }}\left[ {\begin{array}{*{20}{c}} {\cos \psi }&{\sin \psi }&0 \\ { - \sin \psi }&{\cos \psi }&0 \\ 0&0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {x - {x_{\text{d}}}} \\ {y - {y_{\text{d}}}} \\ {\psi - {\psi _{\text{d}}}} \end{array}} \right]. $

本研究的目标为设计一款控制器,在存在参数不确定性和外界干扰的情况下,使位姿控制误差 $ {[{x_{\text{e}}},{y_{\text{e}}},{\psi _{\text{e}}}]^{\text{T}}} $指数收敛到0. 由式(1)~(7)可得,位姿跟踪误差的导数为

$ {\dot x_{\text{e}}} = u - {v_{\text{a}}}\cos {\psi _{\text{e}}} + r{y_{\text{e}}}, $

$ {\dot y_{\text{e}}} = v + {v_{\text{a}}}\sin {\psi _{\text{e}}} - r{x_{\text{e}}}. $

式中: ${v_{\text{a}}}{\text{ = }}( {{{\dot x}^2}_{\text{d}}{\text{ + }}{{\dot y}^2}_{\text{d}}})^{0.5}$.

2. 控制器设计及稳定性分析

2.1. ISGA

SGA可抑制滑模抖振,但仅能实现全局渐近稳定. 本研究提出的基于理想增益的ISGA方法,可实现系统的全局指数稳定. 本研究方法利用新型自适应率更新切换增益值,使其基于理想增益自动调节,在减弱抖动的同时实现全局指数稳定.

针对非线性系统,其表达式为

$ \dot a = f(a,t) + b, $

$ f(a,t) = {\bf\textit{φ}}(a,t){\boldsymbol{\beta }} + \varDelta (a,t). $

式中: $ a $为状态量, $ b $为控制量, ${\bf\textit{φ}}(a,t)$为关于 $ a $和时间 $ t $的已知表达式, $\;{\boldsymbol{\beta }}$为未知参数, $ \varDelta (a,t) $为不确定非线性. 设置控制量 $ b $

$ b = - {{\bf\textit{φ}} \boldsymbol{\hat \beta} } + {\dot a_{\text{d}}} - k{a_{\text{e}}} - \lambda \tanh (\kappa \lambda {a_{\text{e}}}/\varepsilon ). $

式中: $ \kappa = $0.2785$\varepsilon 、k > 0$$\;{\boldsymbol{\hat \beta }}$$\;{\boldsymbol{\beta }}$的估计值, $ {a_{\text{d}}} $$ a $的目标值. 构建李雅普诺夫函数:

$ {V_{\rm{a}}} = a_{\rm{e}}^2/2. $

式中:ae为控制误差, $ {a_{\text{e}}} = a - {a_{\text{d}}} $. $ {V_{\rm{a}}} $的导数为

$ {\dot V_{\text{a}}} = - ka_{\text{e}}^{\text{2}} + {a_{\text{e}}}\left[ - {{{\bf\textit{φ}} \boldsymbol{\tilde \beta} }} + \varDelta - \lambda \tanh \left(\kappa \lambda {a_{\text{e}}}/\varepsilon \right)\right]. $

切换增益 $ \lambda $取值过大会引发滑模面严重抖振,造成系统控制性能的下降;取值过小又不足以抵消参数不确定性和非线性的影响. 因此须设计合适的 $ \lambda $.$ {a_{\text{e}}} $求导,可得

$ \left| {{{\bf\textit{φ}} \boldsymbol{\tilde \beta} } - \varDelta (a,t)} \right|{\text{ = }}\left| {{{\dot a}_{\text{e}}}{\text{ + }}k{a_{\text{e}}}{\text{ + }}\lambda \tanh (\kappa \lambda {a_{\text{e}}}/\varepsilon )} \right|. $

设计理想切换增益 $ {\lambda _{\text{i}}} $

$ {\lambda _{\text{i}}} = \left| {{{\dot a}_{\text{e}}}{\text{ + }}k{a_{\text{e}}}{\text{ + }}\lambda \tanh (\kappa \lambda {a_{\text{e}}}/\varepsilon )} \right|{\text{ + }}\eta . $

式中: $ \eta $为较小的正值. 理想切换增益 $ {\lambda _{\text{i}}} $永远略大于 $\left| {{{\bf\textit{φ}} \boldsymbol{\tilde \beta} } - \varDelta (a,t)} \right|$. 为了实现全局指数稳定,所提算法采用如下切换增益自适应率:

$ \dot \lambda = \left\{ \begin{array}{l} - {c_{\rm{1}}} - {c_{\rm{2}}}\left( {\lambda - {\lambda _{\rm{i}}}} \right),\qquad\quad\;\;\; \lambda > {\lambda _{\rm{i}}};\\ {c_{\rm{1}}} - {c_{\rm{2}}}\left( {\lambda - {\lambda _{\rm{i}}}} \right) + {c_{\rm{3}}}\left| {{a_{\rm{e}}}} \right|,\;\;\;\;\;其他. \end{array} \right.$

式中: $ {c_{\text{1}}} \geqslant P $,且 $ {c_2}、{c_3} > 0 $. $\;P = \sup \left| {{{\dot \lambda }_{\text{i}}} - {c_{\text{3}}}\varepsilon /(\lambda - {\lambda _{\text{i}}})} \right| $. 设计李雅普诺夫函数:

$ {\textit{V}_{\text{b}}} = {\textit{V}_{\text{a}}} + {(\lambda - {\lambda _{\text{i}}})^2}/(2{c_{\text{3}}}). $

${\textit{V}_{\text{b}}}$的导数可以表示为

$ \begin{split} &{{\dot V}_{\rm{b}}} = - ka_{\rm{e}}^{\rm{2}} + {a_{\rm{e}}}\left[ { - {\bf\textit{φ}} {\boldsymbol{\tilde \beta}} + \varDelta - \lambda \tanh (\kappa \lambda {a_{\rm{e}}}/\varepsilon )} \right]+\\ & \qquad (\lambda - {\lambda _{\rm{i}}})(\dot \lambda - {{\dot \lambda }_{\rm{i}}})/{c_{\rm{3}}}. \end{split} $

根据 $ \mathrm{tanh}(·) $函数的性质,满足:

$ 0 \leqslant \left| {\lambda {a_{\text{e}}}} \right| - \lambda {a_{\text{e}}}\tanh (\kappa \lambda {a_{\text{e}}}/\varepsilon )] \leqslant \varepsilon . $

式(19)可以转化为

$ \begin{split} &{{\dot {\textit{V}}}_{\text{b}}} =- ka_{\text{e}}^{\text{2}} + {a_{\text{e}}}\left[ - {{\bf\textit{φ}} {\boldsymbol{\tilde \beta}} } + \varDelta - \lambda \tanh (\kappa \lambda {a_{\text{e}}}/\varepsilon )\right] + (\lambda - {\lambda _{\text{i}}}) \times \\ &\qquad(\dot \lambda - {{\dot \lambda }_{\text{i}}})/{c_3} \leqslant - ka_{\text{e}}^{\text{2}} + {a_{\text{e}}}\left[ - {{\bf\textit{φ}} {\boldsymbol{\tilde \beta}} } + \varDelta - \lambda {{\rm{sgn}}} ({a_{\text{e}}})\right] + \\ &\qquad(\lambda - {\lambda _{\text{i}}})[\dot \lambda - {{\dot \lambda }_{\text{i}}}{\text{ + }}{c_{\text{3}}}\varepsilon /(\lambda - {\lambda _{\text{i}}})]/{c_{\text{3}}}.\\[-10pt] \end{split} $

1)当 $ \lambda > {\lambda _{\text{i}}} $时,满足 $\lambda > {\lambda _{\text{i}}} > \left| {{{\bf\textit{φ} {\boldsymbol{\tilde \beta}} }} - \varDelta (a,t)} \right|$,则

$ \begin{split} & {{\dot {\textit{V}}}_{\text{b}}} \leqslant - ka_{\text{e}}^{\text{2}} + \varepsilon + (\lambda - {\lambda _{\text{i}}})(\dot \lambda - {{\dot \lambda }_{\text{i}}})/{c_{\text{3}}} \leqslant \\ & \qquad - ka_{\text{e}}^{\text{2}} - {c_2}{(\lambda - {\lambda _{\text{i}}})^2}/{c_3}. \end{split} $

2)当 $ \lambda < {\lambda _{\text{i}}} $时,则

$\begin{split} &{{\dot {\textit{V}}}_{\text{b}}} = - ka_{\text{e}}^{\text{2}} + {a_{\text{e}}}\left[ - {\bf\textit{φ}}(a,t){\boldsymbol{\tilde \beta }} + \varDelta (a,t) - \lambda {{\rm{sgn}}} ({a_{\text{e}}})\right] +(\lambda - {\lambda _{\text{i}}}) \times\\ &\qquad(\dot \lambda - {{\dot \lambda }_{\text{i}}})/{c_3} = - ka_{\text{e}}^{\text{2}} + {a_{\text{e}}}\left[ - {\bf\textit{φ}}(a,t){\boldsymbol{\tilde \beta }} + \varDelta (a,t) - {\lambda _{\text{i}}}{{\rm{sgn}}} ({a_{\text{e}}}) \right] + \\ &\qquad(\lambda - {\lambda _{\text{i}}})(\dot \lambda - {{\dot \lambda }_{\text{i}}} + {c_3}\varepsilon /(\lambda - {\lambda _{\text{i}}}))/{c_3} \leqslant - ka_{\text{e}}^{\text{2}} - {c_2}{(\lambda - {\lambda _{\text{i}}})^2}/{c_3}. \\[-10pt] \end{split}$

由1)、2)可得 ${\dot {\textit{V}}_{\text{b}}} \leqslant - ka_{\text{e}}^{\text{2}} - {c_2}{({\lambda _5} - {\lambda _{{\text{5i}}}})^2}/{c_3}$,证明非线性系统式(10)、(11)在控制量式(12)和切换增益式(17)作用下的全局指数稳定性[31].

2.2. 轨迹跟踪控制器设计

2.2.1. 设计 $ {u_{\rm{d}}} $$ {\bar \alpha _{\rm{d}}} $

构造李雅普诺夫函数:

$ {{\textit{V}}_1} = (x_{\text{e}}^{\text{2}} + {\lambda _0}y_{\text{e}}^{\text{2}})/2. $

式中: $ 0 < {\lambda _0} < 1 $.$ {V_1} $的导数可以表示为

$ \begin{split} &{\dot {{V}}_1}{\rm{ = }}{x_{\rm{e}}}\left( {u - {v_{\rm{a}}}\cos {\psi _{\rm{e}}}} \right) + {\lambda _0}{y_{\rm{e}}}\left( {v + {v_{\rm{a}}}\sin {\psi _{\rm{e}}}} \right) + \\ & \qquad \left( {1 - {\lambda _0}} \right)r{x_{\rm{e}}}{y_{\rm{e}}}. \end{split} $

传统的轨迹跟踪控制方式大多基于横荡速度无源有界的假设,在推导广义速度无源有界的过程中存在循环证明的问题. 为了避免横荡速度无源有界的假设,设虚拟速度变量:

$ \bar \alpha = {v_{\text{a}}}\sin {\psi _{\text{e}}}. $

为了保证 ${\dot {\textit{V}}_1}$负定,设定 $ u $$ \bar \alpha $ 的目标值 $ {u_{\text{d}}} $$ {\bar \alpha _{\text{d}}} $ 分别为

$ {u_{\text{d}}} = {v_{\text{a}}}\cos {\psi _{\text{e}}} - {\lambda _1}{x_{\text{e}}}, $

$ {\bar \alpha _{\text{d}}} = - v - {\lambda _2}{y_{\text{e}}}/\rho . $

式中: ${\lambda _1}、{\lambda _2} > 0$,且 $\;\rho = {\left( {1 + x_{\rm{e}}^{\rm{2}} + y_{\rm{e}}^{\rm{2}}} \right)^{0.5}}$. $ u $$ \bar \alpha $的误差值 $ {u_{\text{e}}} $$ {\bar \alpha _{\text{e}}} $分别为

$ {u_{\text{e}}} = u - {u_{\text{d}}}, $

$ {\bar \alpha _{\text{e}}} = \bar \alpha - {\bar \alpha _{\text{d}}}. $

将式(26)~(30)代入(25),可得

$ {\dot {\textit{V}}_1}= - {\lambda _1}x_{\text{e}}^{\text{2}} - \frac{{{\lambda _2}{\lambda _0}y_{\text{e}}^{\text{2}}}}{\rho } + {u_{\text{e}}}{x_{\text{e}}} + {\lambda _0}{\bar \alpha _{\text{e}}}{y_{\text{e}}} + (1 - {\lambda _0})r{x_{\text{e}}}{y_{\text{e}}}. $

2.2.2. 设计推力 $ F $

通过合理设计 $ F $,使误差 $ {u_{\text{e}}} $稳定. 根据式(29),可以得到 $ {u_{\text{e}}} $的微分为

$ {\dot u_{\text{e}}} = ({m_{22}}vr - {d_{11}}u + F + {d_{\text{u}}} - {m_{11}}{\dot u_{\text{d}}})/{m_{11}}. $

构造李雅普诺夫函数:

$ {{\textit{V}}_2}{\text{ = }}{{\textit{V}}_1} + u_{\text{e}}^{\text{2}}/2. $

定义滑模面 $ {S_1} $

$ {S_1} = {u_{\text{e}}} + {\lambda _3}\int {{u_{\text{e}}}{\text{d}}\tau } + \int {{x_{\text{e}}}{\text{d}}\tau } + \int {(1 - {\lambda _0})r{x_{\text{e}}}{y_{\text{e}}}/{u_{\text{e}}}{\text{d}}\tau } . $

式中: $ {\lambda _3} > 0 $. $ {u_{\text{e}}} + {\lambda _3}\int {{u_{\text{e}}}{\text{d}}\tau } $构成PI滑模面的基本项, $ \int {{x_{\text{e}}}{\text{d}}\tau } + \int {(1 - {\lambda _0})r{x_{\text{e}}}{y_{\text{e}}}/{u_{\text{e}}}{\text{d}}\tau } $用于对消式(31)中的 $ {u_{\text{e}}}{x_{\text{e}}} + (1 - {\lambda _0})r{x_{\text{e}}}{y_{\text{e}}} $项,保证系统的稳定性. $ {S_1} $的导数为

$ {\dot{S}}_{1}\text{=(}F\text+{\bf\textit{φ}}_{1}{\boldsymbol{\beta }}_{1})/{m}_{11}\text{,} $

$ {{\bf\textit{φ}}_1}{\text{ = }}\left[ {{\lambda _3}{u_{\text{e}}} + {x_{\text{e}}} - {{\dot u}_{\text{d}}},vr, - u,1} \right], $

$ {{\boldsymbol{\beta }}_1} = {\left[ {{m_{11}},{m_{22}},{d_{11}},{d_{\text{u}}}} \right]^{\text{T}}}. $

因此, $ {\dot u_{\text{e}}} $满足

$ {\dot u_{\text{e}}} = {\dot S_1} - {\lambda _3}{u_{\text{e}}} - {x_{\text{e}}}. $

构造李雅普诺夫函数:

$ {{\textit{V}}_3} = {{\textit{V}}_2} + S_1^2/2. $

根据式(35)~(39),可以得到

$ \begin{split} &{{\dot {\textit{V}}}_3} = - {\lambda _1}x_{\text{e}}^{\text{2}} - {\lambda _0}{\lambda _2}y_{\text{e}}^{\text{2}} + {\lambda _0}{{\bar \alpha }_{\text{e}}}{y_{\text{e}}} - {\lambda _3}u_{\text{e}}^2 + \\ & \qquad (F - {{\bf\textit{φ}}_1}{{\boldsymbol{\beta }}_1})({u_{\text{e}}} + {S_1})/{m_{11}}. \end{split} $

$\;{{\boldsymbol{\beta }}_1}$的数值未知,可以根据其估计值 $\;{{\boldsymbol{\hat \beta }}_1} = \left[ {{{\hat m}_{11}}, {{\hat m}_{22}},} \right. $ $ {\left. {{{\hat d}_{11}},{{\hat d}_{\rm{u}}}} \right]^{\rm{T}}}$设置推力 $ F $

$ F = - {{\bf\textit{φ}}_1}{{\boldsymbol{\hat \beta }}_1} - {\lambda _4}({S_1} - {u_{\text{e}}}) - {\lambda _5}\tanh (\kappa {\lambda _5}({S_1} + {u_{\text{e}}})/{\varepsilon _1}). $

式中: ${\varepsilon }_{1}、{\lambda }_{4}、{\lambda }_{5} > 0$. 将式(41)代入式(35)可以得到

$ \begin{split} &{m_{11}}{{\dot S}_1}{\rm{ = }}\left[ { - {{\bf\textit{φ}}_1} {{{\boldsymbol{\tilde \beta}} }_1} - {\lambda _4}({S_1} - {u_{\rm{e}}}) - } \right.\\ & \qquad \quad \Big. {{\lambda _5}\tanh \left( {\kappa {\lambda _5}\left( {{S_1} + {u_{\rm{e}}}} \right)/{\varepsilon _1}} \right)} \Big]. \end{split} $

式中: ${{\boldsymbol{\tilde \beta }}_1} = {{\boldsymbol{\hat \beta }}_1} - {{\boldsymbol{\beta }}_1}$.将式(42)代入式(39),得到

$ \begin{split} &{{\dot V}_3}{\text{ = }} - {\lambda _1}x_{\text{e}}^{\text{2}} - {\lambda _2}{\lambda _0}y_{\text{e}}^{\text{2}} + {\lambda _0}{{\bar \alpha }_{\text{e}}}{y_{\text{e}}} - {\lambda _4}{S_1}^2/{m_{11}} - \\ & \qquad \left({\lambda _3} - {\lambda _4}/{m_{11}}\right)u_{\text{e}}^2 - \left({u_{\text{e}}} + {S_1}\right) \times \\ & \qquad \left[{\lambda _5}\tanh \left(\kappa {\lambda _5}\left({S_1} + {u_{\text{e}}}\right)/{\varepsilon _1}\right) + {{\bf\textit{φ}}_1}{{{\boldsymbol{\tilde \beta }}}_1}\right]/{m_{11}}. \end{split} $

设置 $ {\lambda _3} > {\lambda _4}/{m_{11}} $,并采用ISGA算法设计 $ {\lambda _5} $自适应率为

$ {{\dot \lambda }_5} = \left\{ \begin{array}{l} - {k_1} - {k_2}\left( {{\lambda _5} - {\lambda _{{\rm{5i}}}}} \right),\qquad \qquad \;\;\;\;\;{\lambda _5} > {\lambda _{\rm{5}}}_{\rm{i}};\\ {k_1} - {k_2}\left( {{\lambda _5} - {\lambda _{{\rm{5i}}}}} \right) + {k_3}\left| {{S_1} + {u_{\rm{e}}}} \right|,\;\;\;其他. \end{array} \right. $

式中: $ {k_1} > \sup \left| {{{\dot \lambda }_{{\text{5i}}}} - {k_3}{\varepsilon _1}/({\lambda _5} - {\lambda _{{\text{5i}}}})} \right| $,且 $ {k_2}、{k_3} > 0 $. $ {\lambda _5} $的理想增益 $ {\lambda _{{\text{5i}}}} $

$ \begin{split} &{\lambda _{{\rm{5i}}}} = \left| {{{\hat m}_{11}}{{\dot S}_1}{\rm{ + }}{\lambda _4}\left( {{S_1} - {u_e}} \right){\rm{ + }}} \right.\\ & \qquad \big. {{\lambda _5}\tanh \left( {\kappa {\lambda _5}\left( {{S_1} + {u_{\rm{e}}}} \right)/{\varepsilon _1}} \right)} \big|{\rm{ + }}{\eta _1}. \end{split} $

式中: $ {\eta _1}{\text{ = }}\sup \left| {({m_{11}} - {{\hat m}_{11}}){{\dot S}_1}} \right| + {\varDelta _1} $,且 $ {\varDelta _1} $为任意小的正值.设置李雅普诺夫函数:

$ {{\textit{V}}_4} = {{\textit{V}}_3} + {({\lambda _5} - {\lambda _{{\text{5i}}}})^2}/(2{m_{11}}{k_3}). $

${{\textit{V}}_4}$的导数为

$ \begin{split} {{\dot {\textit{V}}}_4} < - {\lambda _1}x_{\text{e}}^{\text{2}} - {\lambda _0}{\lambda _2}y_{\text{e}}^{\text{2}} + {\lambda _0}{{\bar \alpha }_{\text{e}}}{y_{\text{e}}} - {\lambda _4}{S_1^2}/{m_{11}} - \\ ({\lambda _3} - {\lambda _4}/{m_{11}})u_{\text{e}}^2 - {k_2}{({\lambda _5} - {\lambda _{{\text{5i}}}})^2}/({m_{11}}{k_3}). \end{split} $

2.2.3. 设计 ${r_{\rm{d}}}$

通过合理设计虚拟控制量 $ r $,使误差 $ {\bar \alpha _e} $稳定. 根据式(30),可得 $ {\bar \alpha _{\text{e}}} $的微分为

$ {\dot{\overline{\alpha }}}_{\text{e}}={\dot{v}}_{\text{a}}\mathrm{sin}{\psi }_{\text{e}}+{v}_{\text{a}}\mathrm{cos}{\psi }_{\text{e}}(r-{\dot{\psi }}_{\text{d}})+Q+{\bf\textit{φ}}_{2}{\boldsymbol{\beta} }_{2}\text{,} $

$ Q = {\lambda _2}({\rho ^{ - 1}} - y_{\text{e}}^{\text{2}}{\rho ^{ - 3}}){\dot y_{\text{e}}} - {k_2}{x_{\text{e}}}{y_{\text{e}}}{\rho ^{ - 3}}{\dot x_{\text{e}}}, $

$ {{\bf\textit{φ}}_2} = \left[ { - ur, - v,1} \right], $

$ {{\boldsymbol{\beta }}_2} = {\left[ {{m_{11}}/{m_{22}},\;{d_{22}}/{m_{22}},\;{d_{\text{v}}}/{m_{22}}} \right]^{\rm{T}}}. $

构造李雅普诺夫函数:

$ {{\textit{V}}_5} = {{\textit{V}}_4} + {\bar \alpha ^{\text{2}}}_{\text{e}}/2. $

${{\textit{V}}_5}$的导数为

$ \begin{split} &{{\dot {\textit{V}}}_5} \leqslant - {\lambda _1}x_{\text{e}}^{\text{2}} - {\lambda _0}{\lambda _2}y_{\text{e}}^{\text{2}} - ({\lambda _3} - {\lambda _4}/{m_{11}})u_{\text{e}}^2 - {\lambda _4}{S_1^2}/{m_{11}} -\\ & \qquad {k_2}{({\lambda _5} - {\lambda _{{\text{5i}}}})^2}/({m_{11}}{k_3}) + {{\bar v}_{\text{e}}}{\lambda _0}{y_{\text{e}}} + {{\bar v}_{\text{e}}}{{\dot v}_{\text{a}}}\sin {\psi _{\text{e}}} + \\ & \qquad {{\bar v}_{\text{e}}}\left[{v_{\text{a}}}\cos {\psi _{\text{e}}}(r - {{\dot \psi }_{\text{d}}}) + {{\bf\textit{φ}}_2}{{\boldsymbol{\beta }}_2} + {\lambda _0}{{\dot y}_{\text{e}}}\right].\\[-10pt] \end{split} $

为了使 ${\dot {\textit{V}}_5}$负定,设定虚拟控制量 $ r $的目标值为 $ {r_{\rm{d}}} $.

$ \begin{split} &{r_{\text{d}}} = {{\dot \varphi }_{\text{d}}} + [ - {{\dot v}_{\text{a}}}\sin {\psi _{\text{e}}} - {\lambda _0}{y_{\text{e}}} - {\lambda _2}{{\dot y}_{\text{e}}} - {\lambda _6}{{\bar \alpha }_{\text{e}}} - {{\bf\textit{φ}}_2}{{{\boldsymbol{\hat \beta }}}_2} -\\ &\qquad{\lambda _7}\tanh (\kappa {\lambda _7}{{\bar \alpha }_{\text{e}}}/{\varepsilon _2}) - Q]/({v_{\text{a}}}\cos {\psi _{\text{e}}}). \end{split} $

式中: $\;{{\boldsymbol{\hat \beta }}_2}$$\;{{\boldsymbol{\beta }}_2}$ 的估计值, $\;{{\boldsymbol{\hat \beta }}_2} = {\left[ {{{\hat m}_{11}}/{{\hat m}_{22}},\;{{\hat d}_{22}}/{{\hat m}_{22}},\;{{\hat d}_v}/{{\hat m}_{22}}} \right]^{\text{T}}}$,且 ${\lambda _6}、{\lambda _7}、{\varepsilon _2} > 0$. 式(48)可转化为

$ \begin{split} &{{\dot {\overline \alpha }}_{\text{e}}} = - {\lambda _0}{y_{\text{e}}} - {\lambda _6}{{\overline \alpha }_{\text{e}}} - {{\bf\textit{φ}}_2}{{{\boldsymbol{\tilde \beta }}}_2} - \\ & \qquad {\lambda _7}\tanh (\kappa {\lambda _7}{{\overline \alpha }_{\text{e}}}/{\varepsilon _2}) + {v_{\text{a}}}\cos {\psi _{\text{e}}}{r_{\text{e}}}. \end{split} $

式中: $\;{{\boldsymbol{\tilde \beta }}_2} = \;{{\boldsymbol{\hat \beta }}_2} - \;{{\boldsymbol{\beta }}_2}$${r_{\text{e}}} = r - {r_{\text{d}}}$. 设置理想切换增益 $ {\lambda _{{\text{7i}}}} $

$ \begin{split} &{\lambda _{{\rm{7i}}}} = \left| {{{\dot {\overline \alpha} }_{\rm{e}}} + {\lambda _0}{y_{\rm{e}}} + {\lambda _6}{{\bar \alpha }_{\rm{e}}} + } \right.\\ & \qquad \big . {{\lambda _7}\tanh \left( {\kappa {\lambda _7}{{\bar \alpha }_{\rm{e}}}/{\varepsilon _2}} \right) - {v_{\rm{a}}}\cos {\psi _{\rm{e}}}{r_{\rm{e}}}} \big |{\rm{ + }}{\eta _2}. \end{split} $

式中: $ {\eta _2} $为任意小的正值. 采用ISGA算法设计的切换增益自适应率为

$ {{\dot \lambda }_7} = \left\{ \begin{array}{l} - {k_4} - {k_5}\left( {{\lambda _7} - {\lambda _{\rm{7}}}_{\rm{i}}} \right),\qquad\quad \;\;\; {\lambda _7} > {\lambda _{\rm{7}}}_{\rm{i}};\\ {k_4} + {k_5}({\lambda _7} - {\lambda _{\rm{7}}}_{\rm{i}}) + {k_6}\left| {{{\bar \alpha }_{\rm{e}}}} \right|,\;\;\;\;\;其他. \end{array} \right. $

式中: $ {k_4} \geqslant {P_2} $,且 ${k_5}、{k_6} > 0$.

$ {P_2} = \sup \left| {{{\dot {\lambda} }_{{\text{7i}}}} - {k_6}{\varepsilon _2}/({\lambda _7} - {\lambda _{{\text{7i}}}})} \right|. $

构造李雅普诺夫函数:

$ {{\textit{V}}_6} = {{\textit{V}}_5} + {({\lambda _7} - {\lambda _{{\text{7i}}}})^2}/(2{k_6}). $

${{\textit{V}}_6}$的导数为

$ \begin{split} &{{\dot {\textit{V}}}_6} \leqslant - {\lambda _1}x_{\text{e}}^{\text{2}} - {\lambda _0}{\lambda _2}y_{\text{e}}^{\text{2}} - ({\lambda _3} - {\lambda _4}/{m_{11}})u_{\text{e}}^2 -\\ & \qquad {\lambda _4}{S_1^2}/{m_{11}} - {\lambda _6}{\bar \alpha _{\rm{e}}^2}{\text{ + }}{{\overline \alpha }_{\text{e}}}{v_{\text{a}}}\cos {\psi _{\text{e}}}{r_{\text{e}}} - \\ & \qquad {k_2}{({\lambda _5} - {\lambda _{{\text{5i}}}})^2}/({m_{11}}{k_3}) - {k_5}{({\lambda _7} - {\lambda _{{\text{7i}}}})^2}/{k_6}. \end{split} $

2.2.4. 设计转矩 T

通过合理设计T,使误差 $ {r_{\text{e}}} $稳定. $ {r_{\text{e}}} $的微分为

$ {\dot r_{\text{e}}} = \left(\left({m_{11}} - {m_{22}}\right)uv - {d_{33}}r + T{\text{ + }}{d_{\text{r}}} - {m_{33}}{\dot r_{\text{d}}}\right)/{m_{33}}. $

构造李雅普诺夫函数:

$ {{\textit{V}}_7} = {{\textit{V}}_6} + {r_{\text{e}}}^{\text{2}}/2. $

设计滑模面函数 $ {S_2} $

$ {S_2} = {r_{\text{e}}} + {\lambda _8}\int {{r_{\text{e}}}{\text{d}}\tau } + \int {{v_{\text{a}}}{{\overline \alpha }_{\text{e}}}\cos {\psi _{\text{e}}}{\text{d}}\tau } . $

式中: ${\lambda _8} > 0$. $ {r_e} + {\lambda _8}\int {{r_{\text{e}}}{\text{d}}\tau } $构成PI滑模面的基本项, $\int {{v_{\text{a}}}{{\overline \alpha }_{\text{e}}}\cos {\psi _{\text{e}}}{\text{d}}\tau }$用于对消式(60)中的 ${\overline \alpha _{\text{e}}}{v_{\text{a}}}\cos {\psi _{\text{e}}}{r_{\text{e}}}$项,保证系统的稳定性. $ {S_2} $的导数可以表示为

$ {\dot{S}}_{2}=({\bf\textit{φ}}_{3}{\boldsymbol{\beta} }_{3}+T)/{m}_{33}\text{,} $

$ {{\bf\textit{φ}}_3}{\text{ = }}\left[ {{k_8}{r_{\text{e}}} + {v_{\text{a}}}{{\bar v}_{\text{e}}}\cos {\psi _{\text{e}}} - {{\dot r}_{\text{d}}},\;uv,\; - r,\;1} \right], $

$ \;{{\boldsymbol{\beta }}_3} = {\left[ {{m_{33}},\;{m_{11}} - {m_{22}},\;{d_{33}},\;{d_{\text{r}}}} \right]^{\rm{T}}}. $

式(61)可表示为

$ {\dot r_{\text{e}}} = {\dot S_2} - {\lambda _8}{r_{\text{e}}} - {v_{\text{a}}}{\bar \alpha _{\text{e}}}\cos {\psi _{\text{e}}}. $

构造李雅普诺夫函数:

$ {{\textit{V}}_8} = {{\textit{V}}_7} + S_2^2/2. $

${{\textit{V}}_8}$的导数可以表示为

$ \begin{split} &{{\dot {\textit{V}}}_8} \leqslant - {\lambda _1}x_{\text{e}}^{\text{2}} - {\lambda _0}{\lambda _2}y_{\text{e}}^{\text{2}} - {\lambda _6}{{\bar \alpha }_{\text{e}}}^{\text{2}} - ({\lambda _3} - {\lambda _4}/{m_{11}})u_{\text{e}}^2 - \\ & \qquad{\lambda _4}{S_1^2}/{m_{11}} - {\lambda _8}r_{\text{e}}^2 + ({{\bf\textit{φ}}_3}{{\boldsymbol{\beta }}_3} + T)({r_{\text{e}}} + {S_2})/{m_{33}} - \\ & \qquad {k_2}{({\lambda _5} - {\lambda _{{\text{5i}}}})^2}/({m_{11}}{k_3}) - {k_5}{({\lambda _7} - {\lambda _{{\text{7i}}}})^2}/{k_6}. \end{split}$

根据 $\;{{\boldsymbol{\beta }}_3}$的估计值 $\;{{\boldsymbol{\hat \beta }}_3} = {\left[ {{{\hat m}_{33}},\;{{\hat m}_{11}} - {{\hat m}_{22}},\;{{\hat d}_{33}},\;{{\hat d}_{\text{r}}}} \right]^{\rm{T}}}$,设计 $ T $

$ T = - {{\bf\textit{φ}}_3}{{\boldsymbol{\hat \beta }}_3} - {\lambda _9}({S_2} - {r_{\text{e}}}) - {\lambda _{10}}\tanh (\kappa {\lambda _{10}}({S_2} + {r_{\text{e}}})/{\varepsilon _3}). $

式中: ${\varepsilon _3}、{\lambda _9}、{\lambda _{10}} > 0$. 此时式(64)可以转化为

$ \begin{split} &{{\dot S}_2} = \left[ { - {{\bf\textit{φ}}_3} {{\boldsymbol{\tilde \beta }}_3}- {\lambda _9}\left( {{S_2} - {r_{\rm{e}}}} \right) - } \right.\\ & \qquad \Big. {{\lambda _{10}}\tanh \left( {\kappa {\lambda _{10}}({S_2} + {r_{\rm{e}}})/{\varepsilon _3}} \right)} \Big]/{m_{33}}. \end{split} $

式中: $\;{{\boldsymbol{\tilde \beta }}_3} = \;{{\boldsymbol{\hat \beta }}_3} - \;{{\boldsymbol{\beta }}_3}$. 式(69)可以转化为

$ \begin{split} &{{\dot {\textit{V}}}_8} \leqslant - {\lambda _1}x_{\text{e}}^{\text{2}} - {\lambda _0}{\lambda _2}y_{\text{e}}^{\text{2}} - {\lambda _4}{S_1^2}/{m_{11}} - ({\lambda _8} - {\lambda _9}/{m_{33}})r_{\text{e}}^{\text{2}} - \\ & \qquad{\lambda _9}{S_2^2}/{m_{33}} - {\lambda _6}{{\bar \alpha }^{\text{2}}}_{\text{e}} - ({\lambda _3} - {\lambda _4}/{m_{11}}){u_{\rm{e}}^2} - \\ &\qquad {k_5}{({\lambda _7} - {\lambda _{{\text{7i}}}})^2}/{k_6} - {k_2}{({\lambda _5} - {\lambda _{{\text{5i}}}})^2}/({m_{11}}{k_3}) - \\ &\qquad({r_{\text{e}}} + {S_2})\left[{\lambda _{10}}\tanh (\kappa {\lambda _{10}}({S_2} + {r_{\text{e}}})/{\varepsilon _3}) + {{\bf\textit{φ}}_3}{{{\boldsymbol{\tilde \beta }}}_3}\right]\Big{/}{m_{33}}.\\[-10pt] \end{split} $

理想增益 $ {\lambda _{10{\rm{i}}}} $可以表示为

$ \begin{split} & {\lambda _{{\rm{10i}}}} = \left| {{{\hat m}_{33}}{{\dot S}_2} + {\lambda _9}({S_2} - {r_{\rm{e}}}) + } \right.\\ & \qquad \big. {{\lambda _{10}}\tanh \left( {\kappa {\lambda _{10}}\left( {{S_2} + {r_{\rm{e}}}} \right)/{\varepsilon _3}} \right)} \big| + {\eta _3}. \end{split} $

式中: $ {\eta _3}{\text{ = }}\sup \left| {({m_{33}} - {{\hat m}_{33}}){{\dot S}_2}} \right| + {\varDelta _2} $,且 $ {\varDelta _2} $是任意小的正数. 采用ISGA算法设计的切换增益自适应率为

$ {{\dot \lambda }_{10}} = \left\{ \begin{array}{l} - {k_7} - {k_8}({\lambda _{10}} - {\lambda _{{\rm{10i}}}}),\;\;\;\;\;\;\qquad\qquad\; {\lambda _{10}} > {\lambda _{10{\rm{i}}}};\\ {k_7} - {k_8}({\lambda _{10}} - {\lambda _{{\rm{10i}}}}) + {k_9}\left| {{S_2} + {r_e}} \right|,\;\;\;\;其他. \end{array} \right. $

式中: ${k_7} \geqslant {P_3}$,且 ${k_8}、{k_9} > 0$.

$ {P_3} = \sup \left| {{{\dot \lambda }_{{\text{10i}}}} - {k_9}{\varepsilon _3}/({\lambda _{10}} - {\lambda _{{\text{10i}}}})} \right|. $

构建李雅普诺夫函数:

$ {{\textit{V}}_9} = {{\textit{V}}_8} + {({\lambda _{10}} - {\lambda _{{\text{10i}}}}{\text{)}}^2}/(2{m_{33}}{k_9}). $

根据式(72)、(74)和(76)可得:

$ \begin{split} &{{\dot{\textit{V}}}_9} \leqslant - {\lambda _1}x_{\text{e}}^{\text{2}} - {\lambda _0}{\lambda _2}y_{\text{e}}^{\text{2}} - {\lambda _6}{{\bar \alpha }_{\text{e}}}^{\text{2}} - ({\lambda _3} - {\lambda _4}/{m_{11}}){u_{\rm{e}}^2} - \\ & \qquad{\lambda _4}{S_1^2}/{m_{11}} - {\lambda _8}{r_{\rm{e}}^2} + ({{\bf\textit{φ}}_3}{{\boldsymbol{\beta }}_3} + T)({r_{\text{e}}} + {S_2})/{m_{33}} - \\ &\qquad{k_2}{({\lambda _5} - {\lambda _{{\text{5i}}}})^2}/({m_{11}}{k_3}) - {k_5}{({\lambda _7} - {\lambda _{{\text{7i}}}})^2}/{k_6} + \\ &\qquad({\lambda _{10}} - {\lambda _{{\text{10i}}}})({{\dot \lambda }_{10}} - {{\dot \lambda }_{{\text{10i}}}})/({m_{33}}{k_9}). \\[-2pt] \end{split} $

根据式(22)~(23)的ISGA特性, $ {V_9} $的导数可以表示为

$ \begin{split} &{{\dot {\textit{V}}}_9} \leqslant - {\lambda _1}x_{\text{e}}^{\text{2}} - {\lambda _0}{\lambda _2}y_{\text{e}}^{\text{2}} - {\lambda _6}{{\bar \alpha }^{\text{2}}}_{\text{e}} - ({\lambda _3} - {\lambda _4}/{m_{11}}){u_{\rm{e}}^2} - \\ & \qquad {\lambda _4}{S_1^2}/{m_{11}} - ({\lambda _8} - {\lambda _9}/{m_{33}})r_{\text{e}}^{\text{2}} - {\lambda _9}{S_2^2}/{m_{33}} - \\ & \qquad{k_2}{({\lambda _5} - {\lambda _{{\text{5i}}}})^2}/({m_{11}}{k_3}) - {k_5}{({\lambda _7} - {\lambda _{{\text{7i}}}})^2}/{k_6} - \\ & \qquad {k_8}{({\lambda _{10}} - {\lambda _{{\text{10i}}}})^2}/({m_{33}}{k_9}). \end{split}$

图2所示为基于ISGA的控制器原理图,具体控制方法见式(24) ~ (78). 该方法先将目标位姿与实际位姿对比,构建滑模面;再采用ISGA算法计算理想增益,求解切换增益数值;最终根据滑模面和切换增益的数值,求取输出力/力矩.

图 2

图 2   基于改进切换增益自适应率的控制器原理

Fig.2   Control principle based on improved switching-gain adaptation


2.3. 稳定性分析

定理1 考虑欠驱动USV的运动学模型和动力学模型式(1)~(6)满足假设1,存在控制器如式(41)、(54)、(70),切换增益如式(44)、(57)、(74),保证轨迹跟踪闭环系统全局指数稳定,跟踪误差 ${{\boldsymbol{z}}_{\text{e}}} = \left[ {{x_{\text{e}}},{y_{\text{e}}},{u_{\text{e}}},{{\overline v}_{\text{e}}},{r_{\text{e}}}} \right]$指数收敛到0.

假设1 目标轨迹 ${{\boldsymbol{\eta }}_d}$和环境干扰力 ${\boldsymbol{\Delta U}}$满足:1) $ {x_{\text{d}}} $$ {\dot x_{\text{d}}} $$ {\ddot x_{\text{d}}} $$ {y_{\text{d}}} $$ {\dot y_{\text{d}}} $$ {\ddot y_{\text{d}}} $$ {\psi _{\text{d}}} $$ {\dot \psi _{\text{d}}} $$ {u_{\text{d}}} $$ {\dot u_{\text{d}}} $$ {r_{\text{d}}} $$ {\dot r_{\text{d}}} $有界;2)环境干扰力 $ \Delta{\boldsymbol{U}}$有界.

证明:给定李雅普诺夫函数

$ \begin{split} &{\textit{V}} = x_{\text{e}}^{\text{2}}/2 + {\lambda _0}y_{\text{e}}^{\text{2}}/2 + {{\bar \alpha }^{\text{2}}}_{\text{e}}/2 + u_{\text{e}}^{\text{2}}/2 + S_1^2/2 +\\ & \quad \;\; {({\lambda _5} - {\lambda _{{\text{5i}}}})^2}/(2{m_{11}}{k_3})+ {({\lambda _7} - {\lambda _{{\text{7i}}}})^2}/(2{k_6}) +\\ & \quad \;\; {r_{\text{e}}}^{\text{2}}/2 + S_2^2/2 + {({\lambda _{10}} - {\lambda _{{\text{10i}}}})^2}/(2{m_{33}}{k_9}). \end{split} $

$ \dot {\textit{V}} \leqslant - 2{ K}V, $

$ \begin{split} &{K} = \min \left\{ {\lambda _1},{\lambda _2},{\lambda _6},{\lambda _3} - {\lambda _4}/{m_{11}},{\lambda _4}/{m_{11}},\right. \\ & \quad \left.{\lambda _8} - {\lambda _9}/{m_{33}},{\lambda _9}/{m_{33}},{k_2},{k_5},{k_8}\right\} . \end{split} $

得到 $V(t) \leqslant V(0){e^{ - 2{ K}t}}$. 因此轨迹跟踪闭环系统全局指数稳定,跟踪误差 ${{\boldsymbol{z}}_{\text{e}}} = \left[ {{x_{\text{e}}},{y_{\text{e}}},{u_{\text{e}}},{{\overline v}_{\text{e}}},{r_{\text{e}}}} \right]$指数收敛到0[31].

虽然本研究的稳定性证明过程较复杂,但是在实际运用过程中,设计 $ F $$ T $$ {r_{\text{d}}} $$ {\lambda _5} $$ {\lambda _7} $$ {\lambda _{10}} $即可,因此计算量不大.

3. 仿真分析

以文献[18]、[20]中的欠驱动USV模型为例,在Matlab中进行Dubins轨迹的仿真实验. USV模型的参数和外界干扰如表1所示.

表 1   欠驱动无人艇的仿真参数

Tab.1  Simulation parameters of underactuated USV

参数 数值 参数 数值
$ {m_{11}}/{\text{kg}} $ 200 ${r_{{\rm{d}}, \max } }/({\text{rad} } \cdot { {\text{s} }^{ - 1} })$ 2
${m_{33} }/({\text{kg} } \cdot { {\text{m} }^{ - 2} })$ 80 $ {d_{22}}/({\text{kg}} \cdot {{\text{s}}^{ - 1}}) $ 100
$ {\hat m_{ii}} $ $0.7{m_{ii} }$ $ {d_{\rm{u}}}/{\text{N}},{d_{\rm{v}}}/{\text{N}} $ $10\text{Rand}\;(·)$
${d_{\rm{r}}}$ $20\text{Rand}\;(·)$ $ {\hat d_{\rm{u}}},{\hat d_{\rm{v}}} $ 0
$ {d_{11}}/({\text{kg}} \cdot {{\text{s}}^{ - 1}}) $ 70 $ {m_{22}}/{\text{kg}} $ 250
$ {d_{33}}/({\text{kg}} \cdot {{\text{m}}^2} \cdot {{\text{s}}^{ - 1}}) $ 50 $ {\hat d_{\rm{r}}} $ 0
$ {\hat d_{ii}} $ $0.7{d_{ii} }$

新窗口打开| 下载CSV


目标轨迹和初始状态如下:

$ \left. \begin{array}{l} {x_{\rm{d}}} = t,{y_{\rm{d}}} = 100,t < 200\;{\rm{s}};\\ {x_{\rm{d}}} = 200 + 100\;{\rm{sin}}\left( {0.005 {\text{π}} (t - 200)} \right),\;\; {y_{\rm{d}}} =\\ 100\;{\rm{cos}}\left( {0.005 {\text{π}} (t - 200)} \right),200 \leqslant t < 400\;{\rm{s}};\\ {x_{\rm{d}}} = 600 - t,{y_{\rm{d}}} = 300 - t,\;\;400 \leqslant t < 600\;{\rm{s}};\\ ({x_0},{y_0},{\psi _0}) = (0,120,0),({u_0},{v_0},{r_0}) = (0,0,0). \end{array} \right\} $

为了验证该方法的有效性,将所提算法与文献[18]、[20]中的算法进行对比. 在所提算法中,给定 $ {P_1} = {P_2} = {P_3} = 1 $. 3种方法的控制参数均通过粒子群算法确定[32]. 目标函数为位姿误差的均方根值

$ J = \sqrt {\sum\limits_{i = 1}^N \left[x_{\text{e}}^{\text{2}}(i) + y_{\text{e}}^{\text{2}}(i) + \psi _{\text{e}}^{\text{2}}(i)\right]\Big{/}3N} . $

式中: $ N $为采样个数. 根据迭代结果,所设计的基于ISGA的欠驱动USV滑模控制器的调定参数如表2所示. 轨迹跟踪仿真的实际轨迹、跟踪误差、速度与滑模面变化结果如图3~6. 图3中,在存在参数不确定性和外界非线性干扰下,欠驱动USV精确平滑地跟踪给定轨迹,证明所提算法的强鲁棒性. 如表3所示,为了验证所提算法计算量是否过大,将所提算法与文献[18]、[20]算法的仿真运行时间进行对比. 表中, $ {E_{{\text{RMS}}}} $为均方根位姿误差, $ {F_{{\text{RMS}}}} $为均方根推力/矩, $ {t_{\text{s}}} $为仿真时间. 由图4表3可得,相较文献[18]、[20]的算法,所提算法的计算时间并未延长;同时所提算法在合理推力和转矩范围内,位置跟踪误差 $ e $和艏摇误差 $ {\psi _{\text{e}}} $可更快速地收敛到原点,使位姿控制精度提升超过25.0%. 图5中,线速度 $ u $$ v $和角速度 $ r $变化曲线平滑,体现出控制系统良好的性能. 图6中,对比ISGA、SGA和固定切换增益的滑模面变化曲线,发现ISGA较SGA能更有效地抑制滑模面的抖振,同时ISGA的鲁棒性和控制精度更高.

表 2   基于改进切换增益自适应率的控制器参数

Tab.2  Parameters of controller based on improved switching-gain adaptation

参数 数值 参数 数值 参数 数值 参数 数值
$ {\lambda _0} $ 0.04 $ {\lambda _6} $ 0.23 $ {\eta _2} $ 0.01 $ {k_5} $ 1.00
$ {\lambda _1} $ 0.08 $ {\lambda _8} $ 10.00 $ {k_1} $ 3.01 $ {k_6} $ 1.00
$ {\lambda _2} $ 0.16 $ {\lambda _9} $ 9.48 $ {k_2} $ 1.00 $ {k_7} $ 2.00
$ {\lambda _3} $ 9.36 $ {\eta _3} $ 0.01 $ {k_3} $ 3.00 $ {k_8} $ 1.00
$ {\lambda _4} $ 10.00 $ {\eta _1} $ 0.01 $ {k_4} $ 1.00 $ {k_9} $ 2.03

新窗口打开| 下载CSV


图 3

图 3   欠驱动无人艇的跟踪轨迹

Fig.3   Tracking trajectory of underactuated USV


表 3   不同算法的轨迹跟踪误差

Tab.3  Trajectory tracking errors of different algorithms

算法 $ {E_{{\text{RMS}}}} $ $ {F_{{\text{RMS}}}} $ ts/s
本研究 0.90 328.67 3.38
文献[18] 1.47 110.54 3.00
文献[20] 1.20 267.81 3.39

新窗口打开| 下载CSV


图 4

图 4   欠驱动无人艇的跟踪误差

Fig.4   Tracking errors of underactuated USV


图 5

图 5   改进切换增益自适应率的欠驱动无人艇速度

Fig.5   Velocities of improved switching-gain adaptation based underactuated USV


图 6

图 6   欠驱动无人艇的滑模面变化

Fig.6   Sliding surfaces of underactuated USV


4. 结 论

(1)结合滑模控制和反步法,提出基于ISGA的欠驱动USV滑模轨迹跟踪算法. 该算法具有鲁棒性强、滑模抖振弱和控制精度高的优点. 相较文献[18]、[20]的算法,所提算法的位姿控制精度提升超过25.0%.

(2)相较SGA,所提算法可实现全局指数稳定.

(3)所提算法同时放宽环境干扰连续可导、USV速度缓慢变化和横荡速度无源有界的条件,更适于工程应用.

(4)后续将针对更为复杂的欠驱动USV模型进行控制器的设计,并进行实验验证. 小型USV多采用电池供电,因此节能优化技术显得尤为重要,针对欠驱动USV开展基于实时海况的节能轨迹规划将是重要的研究方向.

参考文献

GUO G, GAO Z, DONG K

Prescribed-time formation control of surface vessels with asymmetric constraints on LOS range and bearing angles

[J]. Nonlinear Dynamics, 2021, 104 (4): 3701- 3712

DOI:10.1007/s11071-021-06462-8      [本文引用: 1]

SHAO G M, MA Y, MALEKIAN R, et al

A novel cooperative platform design for coupled USV-UAV systems

[J]. IEEE Transactions on Industrial Informatics, 2019, 15 (9): 4913- 4922

DOI:10.1109/TII.2019.2912024     

陈英龙, 赵勇刚, 周华, 等

大型中层拖网网具系统的仿真研究

[J]. 浙江大学学报:工学版, 2014, 48 (4): 625- 632

CHEN Ying-long, ZHAO Yong-gang, ZHOU Hua, et al

Simulation study of large mid-water trawl system

[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (4): 625- 632

GONZALEZ-GARCIA A, CASTAÑEDA H

Guidance and control based on adaptive sliding mode strategy for a USV subject to uncertainties

[J]. IEEE Journal of Oceanic Engineering, 2021, 46 (4): 1144- 1154

DOI:10.1109/JOE.2021.3059210     

HOSSEIN M, HAMID J, HAMID A, et al

Developing a navigation, guidance and obstacle avoidance algorithm for an unmanned surface vehicle (USV) by algorithms fusion

[J]. Ocean Engineering, 2018, 159: 56- 65

DOI:10.1016/j.oceaneng.2018.04.018      [本文引用: 1]

ZHAO Y, QI X, MA Y, et al

Path following optimization for an underactuated USV using smoothly-convergent deep reinforcement learning

[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22 (10): 6208- 6220

[本文引用: 1]

史剑光, 李德骏, 杨灿军, 等

水下自主机器人接驳碰撞过程分析

[J]. 浙江大学学报:工学版, 2015, 49 (3): 497- 504

SHI Jian-guang, LI De-jun, YANG Can-jun, et al

Impact analysis during docking process of autonomous underwater vehicle

[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (3): 497- 504

GUO G, ZHANG P

Asymptotic stabilization of USVs with actuator dead-zones and yaw constraints based on fixed-time disturbance observer

[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (1): 302- 316

DOI:10.1109/TVT.2019.2955020     

ZHANG P, GUO G

Fixed-time switching control of underactuated surface vessels with dead-zones: global exponential stabilization

[J]. Journal of the Franklin Institute, 2020, 357 (16): 11217- 11241

DOI:10.1016/j.jfranklin.2019.05.030      [本文引用: 1]

LIU W W, LIU Y C, BUCKNALL R

A robust localization method for unmanned surface vehicle (USV) navigation using fuzzy adaptive Kalman filtering

[J]. IEEE Access, 2019, 7: 46071- 46083

DOI:10.1109/ACCESS.2019.2909151      [本文引用: 1]

DO K D

Global robust adaptive path-tracking control of underactuated ships under stochastic disturbances

[J]. Ocean Engineering, 2016, 111: 267- 278

DOI:10.1016/j.oceaneng.2015.10.038      [本文引用: 1]

张成举, 王聪, 曹伟, 等

欠驱动USV神经网络自适应轨迹跟踪控制

[J]. 哈尔滨工业大学学报, 2020, 52 (12): 1- 7

DOI:10.11918/201905049      [本文引用: 1]

ZHANG Cheng-ju, WANG Cong, CAO Wei, et al

Adaptive neural network trajectory tracking control for underactuated unmanned surface vehicle

[J]. Journal of Harbin Institute of Technology, 2020, 52 (12): 1- 7

DOI:10.11918/201905049      [本文引用: 1]

PAN C Z, LAI X Z, YANG S X, et al

A bioinspired neural dynamics-based approach to tracking control of autonomous surface vehicles subject to unknown ocean currents

[J]. Neural Computing and Applications, 2015, 26: 1929- 1938

DOI:10.1007/s00521-015-1839-6     

LIU L, WANG D, PENG Z H

Path following of marine surface vehicles with dynamical uncertainty and time-varying ocean disturbances

[J]. Neurcomputing, 2016, 173: 799

DOI:10.1016/j.neucom.2015.08.033      [本文引用: 1]

DONG Z P, WAN L, LI Y M, et al

Trajectory tracking control of underactuated USV based on modified backstepping approach

[J]. International Journal of Naval Architecture and Ocean Engineering, 2015, 7 (5): 817- 832

DOI:10.1515/ijnaoe-2015-0058      [本文引用: 1]

ZHOU W, WANG Y, AHN C K, et al

Adaptive fuzzy backstepping-based formation control of unmanned surface vehicles with unknown model nonlinearity and actuator saturation

[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (12): 14749- 14764

DOI:10.1109/TVT.2020.3039220      [本文引用: 2]

ASHRAFIUON H, MUSKE K R, MCNINCH L C, et al

Sliding-mode tracking control of surface vessels

[J]. IEEE Transactions on Industrial Electronics, 2008, 55 (11): 4004- 4012

DOI:10.1109/TIE.2008.2005933      [本文引用: 3]

XU J, WANG M, QIAO L

Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles

[J]. Ocean Engineering, 2015, 105: 54- 63

DOI:10.1016/j.oceaneng.2015.06.022      [本文引用: 7]

SUN Z, ZHANG G, QIAO L, et al

Robust adaptive trajectory tracking control of underactuated unmanned surface vessel in fields of marine practice

[J]. Journal of Marine Science and Technology, 2018, 23: 950- 957

DOI:10.1007/s00773-017-0524-0      [本文引用: 2]

SUN Z, ZHANG G, YANG J, et al

Research on the sliding mode control for underactuated unmanned surface vessels via parameter estimation

[J]. Nonlinear Dynamics, 2018, 91: 1163- 1175

DOI:10.1007/s11071-017-3937-8      [本文引用: 7]

KAO Y, XIE J, WANG C, et al

A sliding mode approach to H non-fragile observer-based control design for uncertain Markovian neutral-type stochastic systems

[J]. Automatica, 2015, 52: 218- 226

DOI:10.1016/j.automatica.2014.10.095      [本文引用: 2]

LEI Q, BOWEN Y, DEFENG W, et al

Design of three exponentially convergent robust controllers for the trajectory tracking of autonomous underwater vehicles

[J]. Ocean Engineering, 2017, 134: 157- 172

DOI:10.1016/j.oceaneng.2017.02.006      [本文引用: 1]

LU Y S

Sliding-mode disturbance observer with switching-gain adaptation and its application to optical disk drives

[J]. IEEE Transactions on Industrial Electronics, 2009, 56 (9): 3743- 3750

DOI:10.1109/TIE.2009.2025719      [本文引用: 1]

QU Y, XIAO B, FU Z, et al

Trajectory exponential tracking control of unmanned surface ships with external disturbance and system uncertainties

[J]. ISA Transactions, 2018, 78: 47- 55

DOI:10.1016/j.isatra.2017.12.020      [本文引用: 3]

BAI K Q, GONG X T, CHEN S H, et al

Sliding mode nonlinear disturbance observer-based adaptive back-stepping control of a humanoid robotic dual manipulator

[J]. Robotica, 2018, 36 (11): 1728- 1742

DOI:10.1017/S026357471800067X     

ZHAO X H, ZHANG X Y, YE X F, et al

Sliding mode controller design for supercavitating vehicles

[J]. Ocean Engineering, 2019, 184: 173- 183

DOI:10.1016/j.oceaneng.2019.04.066      [本文引用: 1]

劳立明. 基于直驱电液技术的有杆抽油系统运动控制与节能控制研究[D]. 杭州: 浙江大学, 2017: 47-90.

[本文引用: 1]

LAO Li-ming. Research on motion control and energy-saving control of sucker rod pumping systems using direct-driven electro-hydraulic technology [D]. Hangzhou: Zhejiang University, 2017: 47-90.

[本文引用: 1]

WANG N, SU S F

Finite-time unknown observer-based interactive trajectory tracking control of asymmetric underactuated surface vehicles

[J]. IEEE Transactions on Control Systems Technology, 2019, 99 (2): 794- 803

[本文引用: 1]

SINISTERRA A J, DHANAK M R, ELLENRIEDER K V

Stereovision-based target tracking system for USV operations

[J]. Ocean Engineering, 2017, 133: 197- 214

DOI:10.1016/j.oceaneng.2017.01.024      [本文引用: 1]

FOSSEN T I. Marine control systems: guidance, navigation and control of ships rigs and underwater vehicles [M]. Trondheim: Marine Cybernetics, 2002: 35-120.

[本文引用: 1]

KHALIL H K. Nonlinear systems [M]. Beijing: Publishing House of Electronics Industry, 2012: 123-125.

[本文引用: 2]

LIN M W, YANG C J, LI D J

Hybrid strategy based model parameter estimation of irregular-shaped underwater vehicles for predicting velocity

[J]. Robotics and Autonomous Systems, 2020, 127: 103480

DOI:10.1016/j.robot.2020.103480      [本文引用: 1]

/