基于改进切换增益自适应率的欠驱动USV滑模轨迹跟踪控制
Improved switching-gain adaptation based sliding mode control for trajectory tracking of underactuated unmanned surface vessels
通讯作者:
收稿日期: 2021-04-30
基金资助: |
|
Received: 2021-04-30
Fund supported: | 国家自然科学基金资助项目(51890885);国家重点研发计划资助项目(2018YFB2001203);国家自然科学基金创新研究群体项目(51821093) |
作者简介 About authors
于瑞(1995—),男,博士生,从事机电系统集成与控制研究.orcid.org/0000-0002-7834-1740.E-mail:
针对参数的不确定性和外界干扰的非线性给欠驱动无人艇(USV)的精确轨迹跟踪控制带来的挑战,提出基于改进切换增益自适应率(ISGA)的欠驱动USV滑模轨迹跟踪控制算法. 该算法结合反步法和PI滑模控制,以保证欠驱动USV跟踪并保持期望的轨迹;采用基于理想增益的ISGA算法,以提高系统的鲁棒性和抑制滑模抖振现象. 借助李雅普诺夫直接法证明轨迹跟踪控制系统的全局指数稳定性. 仿真结果显示,所提算法具有鲁棒性强、滑模抖振弱和控制精度高等优点. 相较2种先进的轨迹跟踪控制算法,所提算法的位姿控制精度提高超过25.0%.
关键词:
An improved switching-gain adaptation (ISGA) based sliding mode control algorithm was proposed for trajectory tracking of underactuated unmanned surface vessels (USVs), aiming to the challenges which the parametric uncertainties and nonlinearity of disturbance bring to the precise trajectory tracking control of underactuated USVs. In the algorithm, the backstepping and PI sliding mode control were combined to ensure an underactuated USV tracking and maintain the desired trajectory. In addition, an ISGA algorithm based on ideal switching gain was adopted to improve the robustness and suppress the chattering phenomenon. The global exponential stability of the trajectory tracking system was verified by the Lyapunov’s direct method. Simulation results show that the algorithm has the advantages of strong robustness, weak chattering and high accuracy. Compared with the two state-of-the-art algorithms, the position-attitude control accuracy of the proposed algorithm is improved by more than 25.0%.
Keywords:
本文引用格式
于瑞, 徐雪峰, 周华, 杨华勇.
YU Rui, XU Xue-feng, ZHOU Hua, YANG Hua-yong.
滑模控制方法因简单易行、鲁棒性强的特点,在欠驱动USV的轨迹跟踪控制领域得到广泛的应用[17-21]. Ashrafiuon等[17]将滑模控制方法引入欠驱动船舶的轨迹跟踪问题中,实现直线和曲线轨迹的跟踪,但是该方法未考虑外界干扰的影响,且滑模面抖振严重. 随后,Xu等[18]基于外界干扰力连续可导的假设,结合PD滑模控制和反步法提出新型轨迹跟踪控制器,提高了系统的鲁棒性. 在此基础上,Sun等[19]基于USV速度变化缓慢的假设,结合PI滑模控制和自适应控制提出新型控制器,放宽了对环境干扰力连续可导的限制. 之后,Sun等[20]又提出带有参数估计的自适应滑模控制方法,放宽了横荡运动无源有界的假设.在上述滑膜控制方法中除文献[19]外,其他的方法未能实现全局指数稳定,鲁棒性有待提高[22-23]. 此外,上述滑模控制方法易引起抖振现象. 为了缓解抖振,一些学者从控制理论出发,对切换增益采取自适应调节[24-26].Qu等[24]提出新型的切换增益自适应率(switching-gain adaptation, SGA),不仅能提高收敛速度,还能缓解抖振现象. 因此,该方法被应用于光盘驱动器伺服系统[24]和有杆抽油系统[27],但是其不能实现全局指数稳定.
本研究提出基于改进SGA(improved SGA, ISGA)的欠驱动USV滑模轨迹跟踪控制算法,以提高系统鲁棒性、抑制滑模抖振. 同时,该算法结合反步法和PI滑模控制,以保证欠驱动USV跟踪并保持期望的轨迹.
1. 运动模型
如图1所示,欠驱动USV的运动一般包含纵荡、横荡、垂荡、纵摇、横摇和艏摇,共6个部分.图中,
图 1
式中:
式中:
设定目标轨迹
本研究的目标为设计一款控制器,在存在参数不确定性和外界干扰的情况下,使位姿控制误差
式中:
2. 控制器设计及稳定性分析
2.1. ISGA
SGA可抑制滑模抖振,但仅能实现全局渐近稳定. 本研究提出的基于理想增益的ISGA方法,可实现系统的全局指数稳定. 本研究方法利用新型自适应率更新切换增益值,使其基于理想增益自动调节,在减弱抖动的同时实现全局指数稳定.
针对非线性系统,其表达式为
式中:
式中:
式中:ae为控制误差,
切换增益
设计理想切换增益
式中:
式中:
根据
式(19)可以转化为
1)当
2)当
由1)、2)可得
2.2. 轨迹跟踪控制器设计
2.2.1. 设计 $ {u_{\rm{d}}} $ 、 $ {\bar \alpha _{\rm{d}}} $
构造李雅普诺夫函数:
式中:
传统的轨迹跟踪控制方式大多基于横荡速度无源有界的假设,在推导广义速度无源有界的过程中存在循环证明的问题. 为了避免横荡速度无源有界的假设,设虚拟速度变量:
为了保证
式中:
将式(26)~(30)代入(25),可得
2.2.2. 设计推力 $ F $
通过合理设计
构造李雅普诺夫函数:
定义滑模面
式中:
因此,
构造李雅普诺夫函数:
根据式(35)~(39),可以得到
式中:
式中:
设置
式中:
式中:
2.2.3. 设计 ${r_{\rm{d}}}$
通过合理设计虚拟控制量
构造李雅普诺夫函数:
为了使
式中:
式中:
式中:
式中:
构造李雅普诺夫函数:
2.2.4. 设计转矩 T
通过合理设计T,使误差
构造李雅普诺夫函数:
设计滑模面函数
式中:
式(61)可表示为
构造李雅普诺夫函数:
根据
式中:
式中:
理想增益
式中:
式中:
构建李雅普诺夫函数:
根据式(72)、(74)和(76)可得:
根据式(22)~(23)的ISGA特性,
如图2所示为基于ISGA的控制器原理图,具体控制方法见式(24) ~ (78). 该方法先将目标位姿与实际位姿对比,构建滑模面;再采用ISGA算法计算理想增益,求解切换增益数值;最终根据滑模面和切换增益的数值,求取输出力/力矩.
图 2
图 2 基于改进切换增益自适应率的控制器原理
Fig.2 Control principle based on improved switching-gain adaptation
2.3. 稳定性分析
定理1 考虑欠驱动USV的运动学模型和动力学模型式(1)~(6)满足假设1,存在控制器如式(41)、(54)、(70),切换增益如式(44)、(57)、(74),保证轨迹跟踪闭环系统全局指数稳定,跟踪误差
假设1 目标轨迹
证明:给定李雅普诺夫函数
得到
虽然本研究的稳定性证明过程较复杂,但是在实际运用过程中,设计
3. 仿真分析
表 1 欠驱动无人艇的仿真参数
Tab.1
参数 | 数值 | 参数 | 数值 | |
| 200 | | 2 | |
| 80 | | 100 | |
| | | | |
| | | 0 | |
| 70 | | 250 | |
| 50 | | 0 | |
| | — | — |
目标轨迹和初始状态如下:
式中:
表 2 基于改进切换增益自适应率的控制器参数
Tab.2
参数 | 数值 | 参数 | 数值 | 参数 | 数值 | 参数 | 数值 | |||
| 0.04 | | 0.23 | | 0.01 | | 1.00 | |||
| 0.08 | | 10.00 | | 3.01 | | 1.00 | |||
| 0.16 | | 9.48 | | 1.00 | | 2.00 | |||
| 9.36 | | 0.01 | | 3.00 | | 1.00 | |||
| 10.00 | | 0.01 | | 1.00 | | 2.03 |
图 3
表 3 不同算法的轨迹跟踪误差
Tab.3
图 4
图 5
图 5 改进切换增益自适应率的欠驱动无人艇速度
Fig.5 Velocities of improved switching-gain adaptation based underactuated USV
图 6
4. 结 论
(2)相较SGA,所提算法可实现全局指数稳定.
(3)所提算法同时放宽环境干扰连续可导、USV速度缓慢变化和横荡速度无源有界的条件,更适于工程应用.
(4)后续将针对更为复杂的欠驱动USV模型进行控制器的设计,并进行实验验证. 小型USV多采用电池供电,因此节能优化技术显得尤为重要,针对欠驱动USV开展基于实时海况的节能轨迹规划将是重要的研究方向.
参考文献
Prescribed-time formation control of surface vessels with asymmetric constraints on LOS range and bearing angles
[J].DOI:10.1007/s11071-021-06462-8 [本文引用: 1]
A novel cooperative platform design for coupled USV-UAV systems
[J].
大型中层拖网网具系统的仿真研究
[J].
Simulation study of large mid-water trawl system
[J].
Guidance and control based on adaptive sliding mode strategy for a USV subject to uncertainties
[J].
Developing a navigation, guidance and obstacle avoidance algorithm for an unmanned surface vehicle (USV) by algorithms fusion
[J].DOI:10.1016/j.oceaneng.2018.04.018 [本文引用: 1]
Path following optimization for an underactuated USV using smoothly-convergent deep reinforcement learning
[J].
水下自主机器人接驳碰撞过程分析
[J].
Impact analysis during docking process of autonomous underwater vehicle
[J].
Asymptotic stabilization of USVs with actuator dead-zones and yaw constraints based on fixed-time disturbance observer
[J].
Fixed-time switching control of underactuated surface vessels with dead-zones: global exponential stabilization
[J].DOI:10.1016/j.jfranklin.2019.05.030 [本文引用: 1]
A robust localization method for unmanned surface vehicle (USV) navigation using fuzzy adaptive Kalman filtering
[J].DOI:10.1109/ACCESS.2019.2909151 [本文引用: 1]
Global robust adaptive path-tracking control of underactuated ships under stochastic disturbances
[J].DOI:10.1016/j.oceaneng.2015.10.038 [本文引用: 1]
欠驱动USV神经网络自适应轨迹跟踪控制
[J].DOI:10.11918/201905049 [本文引用: 1]
Adaptive neural network trajectory tracking control for underactuated unmanned surface vehicle
[J].DOI:10.11918/201905049 [本文引用: 1]
A bioinspired neural dynamics-based approach to tracking control of autonomous surface vehicles subject to unknown ocean currents
[J].
Path following of marine surface vehicles with dynamical uncertainty and time-varying ocean disturbances
[J].DOI:10.1016/j.neucom.2015.08.033 [本文引用: 1]
Trajectory tracking control of underactuated USV based on modified backstepping approach
[J].DOI:10.1515/ijnaoe-2015-0058 [本文引用: 1]
Adaptive fuzzy backstepping-based formation control of unmanned surface vehicles with unknown model nonlinearity and actuator saturation
[J].DOI:10.1109/TVT.2020.3039220 [本文引用: 2]
Sliding-mode tracking control of surface vessels
[J].DOI:10.1109/TIE.2008.2005933 [本文引用: 3]
Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles
[J].DOI:10.1016/j.oceaneng.2015.06.022 [本文引用: 7]
Robust adaptive trajectory tracking control of underactuated unmanned surface vessel in fields of marine practice
[J].DOI:10.1007/s00773-017-0524-0 [本文引用: 2]
Research on the sliding mode control for underactuated unmanned surface vessels via parameter estimation
[J].DOI:10.1007/s11071-017-3937-8 [本文引用: 7]
A sliding mode approach to H∞ non-fragile observer-based control design for uncertain Markovian neutral-type stochastic systems
[J].DOI:10.1016/j.automatica.2014.10.095 [本文引用: 2]
Design of three exponentially convergent robust controllers for the trajectory tracking of autonomous underwater vehicles
[J].DOI:10.1016/j.oceaneng.2017.02.006 [本文引用: 1]
Sliding-mode disturbance observer with switching-gain adaptation and its application to optical disk drives
[J].DOI:10.1109/TIE.2009.2025719 [本文引用: 1]
Trajectory exponential tracking control of unmanned surface ships with external disturbance and system uncertainties
[J].DOI:10.1016/j.isatra.2017.12.020 [本文引用: 3]
Sliding mode nonlinear disturbance observer-based adaptive back-stepping control of a humanoid robotic dual manipulator
[J].
Sliding mode controller design for supercavitating vehicles
[J].DOI:10.1016/j.oceaneng.2019.04.066 [本文引用: 1]
Finite-time unknown observer-based interactive trajectory tracking control of asymmetric underactuated surface vehicles
[J].
Stereovision-based target tracking system for USV operations
[J].DOI:10.1016/j.oceaneng.2017.01.024 [本文引用: 1]
Hybrid strategy based model parameter estimation of irregular-shaped underwater vehicles for predicting velocity
[J].DOI:10.1016/j.robot.2020.103480 [本文引用: 1]
/
〈 |
|
〉 |
