Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (1): 125-132    DOI: 10.3785/j.issn.1008-973X.2018.01.017
自动化技术     
六自由度装配机器人的动态柔顺性控制
潘立, 鲍官军, 胥芳, 张立彬
浙江工业大学 特种装备制造与先进加工技术教育部/浙江省重点实验室, 浙江 杭州 310014
Dynamic compliant control of six DOF assembly robot
PAN Li, BAO Guan-jun, XU Fang, ZHANG Li-bin
Key Laboratory of E & M, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
 全文: PDF(1749 KB)   HTML
摘要:

为了提升工业机器人装配的精确性与柔顺性,提出适合工业六自由度装配机器人的动态柔顺性控制策略,使之不仅能够实现快速高精度的参考轨迹跟踪,而且能够动态地切换到工件装配时的接触力控制,并能够保持良好的柔顺性接触力.构建机器人关节空间的标准动力学模型,并变换到末端执行器操作空间,获得操作空间的动态特性.给出该控制策略,主要包含参考轨迹给定模块、内环的轨迹跟踪控制器以及动力学参数辨识模块等.采用滑模算法设计轨迹跟踪控制器;采用阻抗滤波器,生成装配作业时末端执行器的期望运动轨迹;采用sigmoid函数设计轨迹跟踪与接触力控制的判别模块;采用最小二乘算法,设计动力学参数辨识模块.采用Lyapunov函数证明了该控制策略的大范围渐进稳定性和收敛性.基于装配实验台上进行现场装配和动态轨迹跟踪的对比性仿真实验研究.仿真实验结果表明:与典型的比例微分(PD)控制相比,动态柔顺性控制能够在较宽广的范围内实现更精确的空间轨迹跟踪和接触力柔性控制,平均相对误差可以有效地控制在-4%到+4%之内.

Abstract:

A dynamic complaint control was presented in order to improve assembly accuracy and flexibility for 6 DOF assembly industrial robot. Then the industrial robot can not only track reference trajectories in working spaces, but also can be dynamically switched to contact force control with high flexibility. The dynamic model of the 6 DOF assembly industrial robot was established in joint space and was transformed into the working space of the end effector. The overall over control framework of the proposed control strategy consisted of reference tracking module, inner tracking control module, dynamic parameter identification module. The reference tracking module was designed based on sliding mode control while the trajectory of contact force was given by using an impedance filter. The switching condition between space tracking and contact force control was designed using sigmoid function. The dynamic parameter identification module was designed by using least square algorithm. All the control modules were verified through Lyapunov function to converge to stable region over wide working ranges. The proposed control was validated through simulations based on an industrial robot platform. Comparative results demonstrate that the proposed dynamic complaint control can significantly improve reference tracking accuracy and contact force control flexibility over wide working range as compared to typical proportional derivative (PD) control. The average relative tracking error of the complaint control can be well maintained within -4% and +4%.

收稿日期: 2017-02-28 出版日期: 2017-12-15
CLC:  TP242  
基金资助:

国家自然科学基金资助项目(U1509212);国家科技支撑计划资助项目(2015BAF01B02).

通讯作者: 张立彬,男,教授,博导.orcid.org/0000-0003-0486-9312.     E-mail: lbz@zjut.edu.cn
作者简介: 潘立(1979-),女,副研究员,博士生,从事机器人装配的研究.orcid.org/0000-0002-4471-3673.E-mail:26404604@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

潘立, 鲍官军, 胥芳, 张立彬. 六自由度装配机器人的动态柔顺性控制[J]. 浙江大学学报(工学版), 2018, 52(1): 125-132.

PAN Li, BAO Guan-jun, XU Fang, ZHANG Li-bin. Dynamic compliant control of six DOF assembly robot. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 125-132.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.01.017        http://www.zjujournals.com/eng/CN/Y2018/V52/I1/125

[1] 吕立新, 李庆, 李路, 等. 基于PD运动控制算法的装配机器人设计[J]. 重庆科技学院学报:自然科学版, 2014, 3(4):97-101. LV Li-xin, LI Qing, LI Lu, et al. Assembly robot based on PD control algorithm design[J]. Journal of Chongqing Institute of Technology:Natural Science Edition, 2014, 3(4):97-101.
[2] 高亚军. 六自由度机器人平滑轨迹规划与控仿一体化系统研究[D]. 杭州:浙江工业大学, 2014. GAO Ya-jun. Six degrees of freedom robot smooth trajectory planning and control integration system research[D]. Hangzhou:Zhejiang University of Technology, 2014.
[3] 王学林, 肖永飞, 毕淑慧, 等. 机器人柔性抓取试验平台的设计与抓持力跟踪阻抗控制[J]. 农业工程学报, 2015, 1(8):58-63. WANG Xue-lin, XIAO Yong-fei, BI Shu-hui, et al. New robot flexible scraping test platform design and grasping force tracking impedance control[J]. Journal of Agricultural Engineering, 2015, 1(8):58-63.
[4] 陈兆芃, 金明河, 樊绍巍, 等. 面向任务的机器人灵巧手控制系统及多指空间协调阻抗控制[J]. 哈尔滨工程大学学报, 2012, 4(4):476-484. CHEN Zhao-peng, JIN Ming-he, FAN Shao-wei, et al. Control system and multiple task oriented dexterous robot hand refers to the space coordinate impedance control[J]. Journal of Harbin Engineering University, 2012, 4(4):476-484.
[5] 樊绍巍, 宗华, 邱景辉, 等. 机器人灵巧手柔性关节自适应阻抗控制[J]. 电机与控制学报, 2012, 12(8):78-86. FAN Shao-wei, ZONG Hua, QIU Jing-hui, et al. Dexterous robot hand flexible joint adaptive impedance control[J]. Journal of Motor and Control, 2012, 12(8):78-86.
[6] SICILIANO B, SCIAVICCO L, VILLANI L, et al. Robotics:modeling, planning and control[M]. New York:Springer, 2015.
[7] CRAIG J J. Introduction to robotics:mechanics and control[M]. New York:Pearson Education, 2015.
[8] ASTROM K J, WITTENMARK B. Adaptive control. reading[M]. MA:Wesley, 2014:34-43.
[9] 段魁臣. 稳定性基本理论与Lyapunov函数构造[M]. 乌鲁木齐:新疆大学出版社,2015:16-28.
[10] SLOTINE J J E, LI W. Applied nonlinear control[M]. Englewood Cliffs:Prentice-Hall, 2008:18-28.
[11] LEE H, KIM E, KANG H J, et al. A new sliding-mode control with fuzzy boundary layer[J]. Fuzzy Sets System, 2012, 120(6):135-143.
[12] DAVLIAKOS I, PAPADOPOULOS E. Impedance model-based control for an electrohydraulic Stewart platform[J]. European Journal of Control, 2009, 5(5):560-577.
[13] Mitsubishi electric corporation[R/OL]. 2012-06-28. http://www.mitsubishielectric.com/fa/cn_zh/products/rbt/robot/.
[14] VIJAY M, JENA D. PSO based neuro fuzzy sliding mode control for a robot manipulator[J]. Journal of Electrical Systems and Information Technology, 2017, 4(1):243-256.

[1] 王晨学, 平雪良, 徐超. 解决约束平面偏移问题的机械臂闭环标定[J]. 浙江大学学报(工学版), 2018, 52(11): 2110-2119.
[2] 赵晓东, 刘作军, 陈玲玲, 杨鹏. 下肢假肢穿戴者跑动步态识别方法[J]. 浙江大学学报(工学版), 2018, 52(10): 1980-1988.
[3] 王硕朋, 杨鹏, 孙昊. 听觉定位数据库构建过程优化[J]. 浙江大学学报(工学版), 2018, 52(10): 1973-1979.
[4] 傅晓云, 雷磊, 杨钢, 李宝仁. 喷水推进型水下滑翔机的水平翼参数配置及定常运动分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1499-1508.
[5] 李中雯, 王斌锐, 陈迪剑. 有并联脊柱的四足机器人步态规划[J]. 浙江大学学报(工学版), 2018, 52(7): 1267-1274.
[6] 柯显信, 张文朕, 杨阳, 温雷. 仿人机器人多传感器定位系统[J]. 浙江大学学报(工学版), 2018, 52(7): 1247-1252.
[7] 李泚泚, 田国会, 张梦洋, 张营. 基于本体的物品属性类人认知及推理[J]. 浙江大学学报(工学版), 2018, 52(7): 1231-1238.
[8] 陈迪剑, 徐一展, 王斌锐. 基于双生成函数的步行机器人最优步态生成[J]. 浙江大学学报(工学版), 2018, 52(7): 1253-1259.
[9] 吴炳龙, 曲道奎, 徐方. 基于力/位混合控制的工业机器人精密轴孔装配[J]. 浙江大学学报(工学版), 2018, 52(2): 379-386.
[10] 谷雨, 李平, 韩波. 基于分层粒子滤波的地标检测与跟踪[J]. J4, 2010, 44(4): 687-691.
[11] 蒋荣欣, 张亮, 田翔, 陈耀武. 多机器人队形变换最优效率求解[J]. J4, 2010, 44(4): 722-727.
[12] 刘楚辉, 姚宝国, 柯映林. 工业机器人切削加工离线编程研究[J]. J4, 2010, 44(3): 426-431.
[13] 李强, 王宣银, 程佳. Stewart液压平台轨迹跟踪自适应滑模控制[J]. J4, 2009, 43(6): 1124-1128.
[14] 奚海燕, 牟同升, 李俊凯, 等. 平板显示器彩色运动伪像的测量与评价[J]. J4, 2009, 43(6): 1158-1162.
[15] 程邦胜, 唐孝威. Harris尺度不变性关键点检测子的研究[J]. J4, 2009, 43(5): 855-859.