Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (2): 342-350    DOI: 10.3785/j.issn.1008-973X.2025.02.012
交通工程、土木工程     
阻隔墙中考虑半透膜效应的污染物迁移数值解
邓圣义1(),周永伟3,蒲诃夫1,2,*(),李育超4,闵明1
1. 华中科技大学 土木与水利工程学院,湖北 武汉 430074
2. 深圳大学 土木与交通工程学院,广东 深圳 518061
3. 湖北地矿建设工程承包集团有限公司,湖北 武汉 430050
4. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058
Numerical solution for contaminant transport in cutoff wall considering semipermeable membrane behavior
Shengyi DENG1(),Yongwei ZHOU3,Hefu PU1,2,*(),Yuchao LI4,Ming MIN1
1. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518061, China
3. Hubei Dijian Construction Limited Company, Wuhan 430050, China
4. Key Laboratory of Soils and Geoenvironmental Engineering, Ministry ofEducation, Zhejiang University, Hangzhou 310058, China
 全文: PDF(955 KB)   HTML
摘要:

建立膨润土系阻隔墙-含水层系统中考虑半透膜效应的污染物迁移数值模型,提出有限差分解法. 通过与现有的解析解、半透膜试验和COMSOL软件数值模拟的比较,验证了该数值解的有效性. 利用提出的数值解开展参数分析,研究半透膜效应、污染物源质量浓度、阻隔墙厚度、阻隔墙渗透系数和水力梯度对铅离子在阻隔墙-含水层系统中迁移规律的影响. 结果表明,半透膜效应对污染物迁移有显著影响,不考虑半透膜效应会较大地低估阻隔墙的击穿时间并高估污染物流出质量. 针对所分析的不同工况,当考虑半透膜效应时,污染物击穿时间提高了12.2%~79.6%,污染物质量通量减少了18.4%~62.3%. 当渗透系数从1×10?8 m/s减小至1×10?10 m/s时,质量通量减少了2个数量级,且是否考虑半透膜效应的差异由31.1%增加至97.5%. 提出的数值解能够考虑对流、分子扩散、机械弥散、半透膜效应、有效孔隙率等作用,可以用于膨润土系阻隔墙的设计和污染物迁移过程分析.

关键词: 阻隔墙污染物迁移半透膜效应    
Abstract:

A numerical model was proposed for contaminant transport in bentonite-based cutoff wall-aquifer system, considering the semipermeable membrane behavior, and the finite difference method was used to obtain the solution. The effectiveness of the numerical solution was validated against the existing analytical solution, semipermeable membrane experiment and COMSOL software simulation. Parametric analyses were conducted using the proposed numerical solution, and the effects of semipermeable membrane behavior, contaminant source mass concentration, thickness of cutoff wall, hydraulic conductivity of cutoff wall, and hydraulic gradient on the transport of lead in the cutoff wall-aquifer system were analyzed. Results show that the semipermeable membrane behavior has a significant impact on contaminant transport, and neglecting this effect can lead to a great underestimation of the breakthrough time and an overestimation of outflow mass flux. Incorporating the semipermeable membrane behavior increases the breakthrough time by 12.2% to 79.6% and decreases the mass flux by 18.4% to 62.3% for the various analyzed conditions. Mass flux reduces by 2 orders of magnitude, and the difference between considering and neglecting semipermeable membrane behavior increases from 31.1% to 97.5% for hydraulic conductivity decreasing from 1×10?8 m/s to 1×10?10 m/s. The proposed numerical solution can consider the effects of advection, molecular diffusion, mechanical dispersion, semipermeable membrane behavior and effective porosity, which can be used in design of bentonite-based cutoff wall and the associated analysis of contaminant transport process.

Key words: cutoff wall    contaminant transport    semipermeable membrane behavior
收稿日期: 2023-12-18 出版日期: 2025-02-11
CLC:  TU 443  
基金资助: 国家重点研发计划资助项目(2019YFC1806000);国家自然科学基金资助项目(52078235).
通讯作者: 蒲诃夫     E-mail: dengsy@hust.edu.cn;puh@hust.edu.cn
作者简介: 邓圣义(1999—),男,硕士生,从事环境岩土的研究. orcid.org/0009-0006-3454-0592. E-mail:dengsy@hust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
邓圣义
周永伟
蒲诃夫
李育超
闵明

引用本文:

邓圣义,周永伟,蒲诃夫,李育超,闵明. 阻隔墙中考虑半透膜效应的污染物迁移数值解[J]. 浙江大学学报(工学版), 2025, 59(2): 342-350.

Shengyi DENG,Yongwei ZHOU,Hefu PU,Yuchao LI,Ming MIN. Numerical solution for contaminant transport in cutoff wall considering semipermeable membrane behavior. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 342-350.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.02.012        https://www.zjujournals.com/eng/CN/Y2025/V59/I2/342

图 1  阻隔墙-含水层系统模型的示意图
图 2  本文数值解与Li等[18]解析解的相对质量浓度分布对比
试验
编号
ρ0/
(g·m?3)
ρt/
(g·m?3)
ρb/
(g·m?3)
L/
mm
nk/ (10?12
m·s?1)
De /(10?10
m2·s?1)
试验10.7820.7190.0315.60.641.10.45
试验21.8381.6150.1255.00.602.00.75
试验36.2565.4110.5754.90.620.750.92
表 1  Malusis等[19]开展的半透膜试验的相关参数
图 3  本文数值解与Malusis等[19]试验结果的累积流出质量的对比
结构k /(10?7 m·s?1)τvs /(10?9 m·s?1)α/mKd/(mL·g?1)ρs/(g·cm?3)D0/(m2·s?1)γw /(kN·m?3)t1/2 /a
土-膨润土阻隔墙0.01[3]0.3[5]2.500.0063.89[26]1.7[27]9.45×10?10 [28]10+∞
含水层1000[4]0.5[5]2.220.10[4]1.55[27]9.45×10?10 [28]10+∞
表 2  污染物的迁移参数和阻隔墙-含水层系统的材料参数
图 4  本文数值解与COMSOL软件的计算结果对比
图 5  阻隔墙半透膜效率系数对污染物相对质量浓度和质量通量的影响
图 6  污染物源质量浓度对污染物相对质量浓度曲线的影响
图 7  不同分配系数下阻隔墙厚度对污染物击穿时间的影响
图 8  阻隔墙渗透系数对污染物相对质量浓度和质量通量的影响
1 KODA E, OSINSKI P Bentonite cut-off walls: solution for landfill remedial works[J]. Environmental Geotechnics, 2017, 4 (4): 223- 232
doi: 10.1680/jenge.14.00022
2 陈云敏, 谢海建, 张春华 污染物击穿防污屏障与地下水土污染防控研究进展[J]. 水利水电科技进展, 2016, 36 (1): 1- 10
CHEN Yunmin, XIE Haijian, ZHANG Chunhua Review on penetration of barriers by contaminants and technologies for groundwater and soil contamination control[J]. Advances in Science and Technology of Water Resources, 2016, 36 (1): 1- 10
3 LI Y C, CHEN G N, CHEN Y M, et al Design charts for contaminant transport through slurry trench cutoff walls[J]. Journal of Environmental Engineering, 2017, 143 (9): 06017005
doi: 10.1061/(ASCE)EE.1943-7870.0001253
4 XIE H J, WANG S Y, CHEN Y, et al An analytical model for contaminant transport in cut-off wall and aquifer system[J]. Environmental Geotechnics, 2018, 7 (7): 457- 466
5 YAN H X, XIE H J, WANG S Y, et al A two-dimensional analytical model for organic contaminant transport in cutoff wall and aquifer system[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45 (5): 631- 647
doi: 10.1002/nag.3179
6 HARTE P T, KONIKOW L F, HORNBERGER G Z Simulation of solute transport across low-permeability barrier walls[J]. Journal of Contaminant Hydrology, 2006, 85 (3/4): 247- 270
7 彭春辉, 冯世进, 陈宏信, 等 地下水渗流条件下土工膜复合隔离墙中有机污染物迁移研究[J]. 岩土工程学报, 2021, 43 (11): 2055- 2063
PENG Chunhui, FENG Shijin, CHEN Hongxin, et al Migration of organic contaminants in composite geomembrane cut-off wall considering groundwater seepage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (11): 2055- 2063
8 YEO S S, SHACKELFORD C D, EVANS J C Membrane behavior of model soil-bentonite backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131 (4): 418- 429
doi: 10.1061/(ASCE)1090-0241(2005)131:4(418)
9 NI H, SHEN S Q, FU X L, et al Assessment of membrane and diffusion behavior of soil-bentonite slurry trench wall backfill consisted of sand and xanthan gum amended bentonite[J]. Journal of Cleaner Production, 2022, 365: 132779
doi: 10.1016/j.jclepro.2022.132779
10 SHACKELFORD C D. Membrane behavior of engineered clay barriers for geoenvironmental containment: state of the art [C]// GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering . Oakland: [s. n. ], 2012: 3419-3428.
11 MALUSIS M A, SHACKELFORD C D, MANEVAL J E. Critical review of coupled flux formulations for clay membranes based on nonequilibrium thermodynamics [J]. Journal of Contaminant Hydrology , 2012, 138–139: 40–59.
12 傅贤雷, 杜延军, 沈胜强, 等 PAC改性膨润土/砂竖向阻隔屏障回填料化学渗透膜效应及扩散特性研究[J]. 岩石力学与工程学报, 2020, 39 (Suppl.2): 3669- 3675
FU Xianlei, DU Yanjun, SHEN Shengqiang, et al Chemico-osmotic membrane behavior and diffusive properties of PAC amended bentonite/sand vertical cutoff wall backfills[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39 (Suppl.2): 3669- 3675
13 李双杰, 伍浩良, 傅贤雷, 等 氧化镁碱激发矿粉-膨润土-土竖向屏障材料阻隔铅污染物的化学渗透膜效应[J]. 岩土工程学报, 2022, 44 (6): 1078- 1086
LI Shuangjie, WU Haoliang, FU Xianlei, et al Experimental study on chemico-osmotic membrane behaviors of reactive MgO-activated slag-bentonite backfill in vertical cutoff walls exposed to Pb-laden groundwater[J]. Chinese Journal of Geotechnical Engineering, 2022, 44 (6): 1078- 1086
14 FU X L, ZHANG R, REDDY K R, et al Membrane behavior and diffusion properties of sand/ shmp-amended bentonite vertical cutoff wall backfill exposed to lead contamination[J]. Engineering Geology, 2021, 284: 106037
doi: 10.1016/j.enggeo.2021.106037
15 MANASSERO M, DOMINIJANNI A Modelling the osmosis effect on solute migration through porous media[J]. Geotechnique, 2003, 53 (5): 481- 492
doi: 10.1680/geot.2003.53.5.481
16 MALUSIS M A, SHACKELFORD C D Explicit and implicit coupling during solute transport through clay membrane barriers[J]. Journal of Contaminant Hydrology, 2004, 72 (1-4): 259- 285
doi: 10.1016/j.jconhyd.2003.12.002
17 TONG S, SAMPLE-LORD K M Coupled solute transport through a polymer-enhanced bentonite[J]. Soils and Foundations, 2022, 62 (6): 101235
doi: 10.1016/j.sandf.2022.101235
18 LI Y C, CLEALL P J Analytical solutions for advective–dispersive solute transport in double-layered finite porous media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35 (4): 438- 460
doi: 10.1002/nag.903
19 MALUSIS M A, DANIYAROV A S Membrane efficiency and diffusive tortuosity of a dense prehydrated geosynthetic clay liner[J]. Geotextiles and Geomembranes, 2016, 44 (5): 719- 730
doi: 10.1016/j.geotexmem.2016.05.006
20 郑紫荆, 朱云海, 王巧, 等. 有机污染物在含土工膜复合隔离墙和含水层系统的运移半解析模型 [J]. 岩土力学, 2022, 43(2): 453–465.
ZHENG Zijing, ZHU Yunhai, WANG Qiao, et al. A semi-analytical model for analyzing the transport of organic pollutants through the geomembrane composite cut-off wall and aquifer system [J], Rock and Soil Mechanics , 2022, 43(2): 453–465.
21 MALUSIS M A, KANG J-B, SHACKELFORD C D Restricted salt diffusion in a geosynthetic clay liner[J]. Environmental Geotechnics, 2015, 2 (2): 68- 77
doi: 10.1680/envgeo.13.00080
22 GELHAR L W, WELTY C, REHFELDT K R A critical review of data on field-scale dispersion in aquifers[J]. Water Resources Research, 1992, 28 (7): 1955- 1974
doi: 10.1029/92WR00607
23 PENG C H, FENG S J, CHEN H X, et al An analytical model for one-dimensional diffusion of degradable contaminant through a composite geomembrane cut-off wall[J]. Journal of Contaminant Hydrology, 2021, 242: 103845
doi: 10.1016/j.jconhyd.2021.103845
24 EGUSA N, NAKAGAWA K, HIRATA T A retardation factor considering solute transfer between mobile and immobile water in porous media[J]. Environmental Modeling and Assessment, 2021, 26 (1): 103- 112
doi: 10.1007/s10666-020-09726-6
25 TANG Q, KATSUMI T, INUI T, et al Membrane behavior of bentonite-amended compacted clay towards Zn(II) and Pb(II)[J]. Membrane Water Treatment, 2015, 6 (5): 393- 409
doi: 10.12989/mwt.2015.6.5.393
26 WANG Y Z, CHEN Y M, XIE H J, et al Lead adsorption and transport in loess-amended soil-bentonite cut-off wall[J]. Engineering Geology, 2016, 215: 69- 80
doi: 10.1016/j.enggeo.2016.11.002
27 DING X H, FENG S J, ZHENG Q T, et al A two-dimensional analytical model for organic contaminants transport in a transition layer-cutoff wall-aquifer system[J]. Computers and Geotechnics, 2020, 597: 126318
28 YAWS C L. Handbook of transport property data: viscosity, thermal conductivity, and diffusion coefficients of liquids and gases [M]. Houston: Gulf Pub. Co, 1995.
29 KANG J B, SHACKELFORD C D Consolidation enhanced membrane behavior of a geosynthetic clay liner[J]. Geotextiles and Geomembranes, 2011, 29 (6): 544- 556
doi: 10.1016/j.geotexmem.2011.07.002
[1] 杜建彪,罗强,蒋良潍,曹子奇,王腾飞,张良. 膨胀土流态固化改性试验与配合比研究[J]. 浙江大学学报(工学版), 2024, 58(10): 2137-2148.
[2] 段君义,吴俊江,粟雨,吕志涛,林宇亮,杨果林. 浅层膨胀土及其纤维改良土的剪切强度特性[J]. 浙江大学学报(工学版), 2024, 58(3): 547-556.
[3] 李丽华,李孜健,肖衡林,黄少平,刘一鸣. 稻壳灰-高炉矿渣固化膨胀土工程特性及机理[J]. 浙江大学学报(工学版), 2023, 57(9): 1736-1745.
[4] 聂绍凯,刘鹏飞,巴特,陈云敏. 基于微流控芯片模型的渗流实验与数值模拟[J]. 浙江大学学报(工学版), 2023, 57(5): 967-976.
[5] 曹志刚,王思崎,许逸飞,白晓东,袁宗浩,马夏飞. 地铁车辆段上盖建筑道砟垫减振机理与效果[J]. 浙江大学学报(工学版), 2023, 57(1): 71-80.
[6] 倪佳琪,詹良通,冯嵩,孔令刚,丰田. 压实钢渣-膨润土覆盖防渗材料试验研究[J]. 浙江大学学报(工学版), 2022, 56(12): 2478-2486.
[7] 陈伟航,罗强,王腾飞,张文生,蒋良潍. DMC复合地基工后沉降可靠性分析及设计优化[J]. 浙江大学学报(工学版), 2022, 56(10): 2019-2027.
[8] 刘夏临,张晟斌,陈佺,舒恒,刘尚各. 基于TOUGH2和FLAC3D的流固弱耦合程序开发及验证[J]. 浙江大学学报(工学版), 2022, 56(8): 1485-1494.
[9] 庄心善,周睦凯,周荣,陶高梁. EPS改良膨胀土孔隙特征与滞回曲线形态[J]. 浙江大学学报(工学版), 2022, 56(7): 1353-1362, 1403.
[10] 王东星,伍林峰,唐弈锴,徐学勇. 建筑废弃泥浆泥水分离过程与效果评价[J]. 浙江大学学报(工学版), 2020, 54(6): 1049-1057.
[11] 胡文韬,刘豆,耿大新,王宁,徐长节,上官兴,闵婕. 水平受荷阶梯形变截面桩的内力及变形分析[J]. 浙江大学学报(工学版), 2020, 54(4): 739-747.
[12] 谢约翰,唐朝生,刘博,程青,尹黎阳,蒋宁俊,施斌. 基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良[J]. 浙江大学学报(工学版), 2019, 53(8): 1438-1447.
[13] 杨果林, 段君义, 杨啸, 徐亚斌. 降雨与自然状态下膨胀土基床的振动特性[J]. 浙江大学学报(工学版), 2016, 50(12): 2319-2327.
[14] 张俊峰, 戴小松, 邹维列, 徐顺平, 李子优. 水泥改性固化脱水淤泥路用性能试验[J]. 浙江大学学报(工学版), 2015, 49(11): 2165-2171.
[15] 林呈祥,凌道盛,钟世英. 颗粒流数值模拟在月壤岩土问题研究中的应用概况[J]. 浙江大学学报(工学版), 2015, 49(9): 1679-1691.