Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (9): 1736-1745    DOI: 10.3785/j.issn.1008-973X.2023.09.005
土木工程、水利工程     
稻壳灰-高炉矿渣固化膨胀土工程特性及机理
李丽华1,2(),李孜健1,2,肖衡林1,2,*(),黄少平1,2,刘一鸣1,2
1. 湖北工业大学 土木建筑与环境学院,湖北 武汉 430068
2. 湖北工业大学 河湖健康智慧感知与生态修复教育部重点实验室,湖北 武汉 430068
Engineering characteristics and mechanism of rice husk ash-ground granulated blast slag cured expansive soil
Li-hua LI1,2(),Zi-jian LI1,2,Heng-lin XIAO1,2,*(),Shao-ping HUANG1,2,Yi-ming LIU1,2
1. School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
2. Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
 全文: PDF(3502 KB)   HTML
摘要:

为了改良膨胀土力学性能,提高其膨胀变形稳定性,通过无侧限抗压、自由膨胀率、扫描电镜和X射线衍射等方法,研究以工业固废稻壳灰-高炉矿渣(RHA-GGBS)为材料环保固化剂的膨胀土固化效果及机理. 结果表明:固化剂对膨胀土力学性能有显著提升,当配比超过6∶4或RHA-GGBS质量分数超过10%时,力学性能不升反降. 试样养护前后自由膨胀率降低原因不同,养护前为替换作用,养护后为水化反应。养护后的试样自由膨胀率降幅均高于未养护的,养护组较未养护组降幅最高为3.6倍. 在10%RHA-GGBS质量分数临界值条件下,试样生成的团聚体、少量针棒状物及大量无定型凝胶均分布在土体的表面及孔隙;RHA-GGBS可提高土体强度,降低土体膨胀,RHA-GGBS质量分数超过临界值时,存在过量SiO2无法反应,生成物总量限制,使得固化反应受到不同程度的抑制作用的影响.

关键词: 固化/稳定化稻壳灰-高炉矿渣(RHA-GGBS)膨胀土工程特性固化机理    
Abstract:

In order to improve the mechanical properties of expansive soil and improve its stability of expansion deformation, by means of unconfined compressive strength, free expansion rate, scanning electron microscopy and X-ray diffraction, the solidification effect and the mechanism of expansive soil with industrial solid waste rice husk ash-ground granulated blast slag (RHA-GGBS) as environmental curing agent were studied. Results show that the curing agent significantly improves the mechanical properties of expansive soil. When the ratio exceeded 6 ∶ 4 or the mass fraction of RHA-GGBS exceeded 10%, the mechanical properties did not increase but decrease. The reasons for the decrease of free expansion rate before and after curing are different. Before curing, it is a substitution effect, and after curing, it is a hydration reaction. The decrease of free expansion rate after curing was higher than that of uncured samples, and the decrease of free expansion rate after curing was 3.6 times higher than that of uncured samples. Sample generated agglomerates, small amount of needle stick and large amount of amorphous gel under the 10% RHA-GGBS mass fraction critical value conditions, which were distributed on the soil surface and fill the pores. RHA-GGBS can improve the strength of the soil body, reduce the expansion of the soil, RHA-GGBS mass fraction exceeds the critical value, there is an excess of SiO2 can not be reacted, by the total amount of product limitations, the curing is affected by varying degrees of inhibition

Key words: solidification/stabilization    rice husk ash-ground granulated blast slag (RHA-GGBS)    expansive soil    engineering characteristics    curing mechanism
收稿日期: 2022-11-02 出版日期: 2023-10-16
CLC:  TU 443  
基金资助: 国家自然科学基金资助项目(52278347,U22A20232);湖北省重点研发计划项目(2022BCA059);湖北工业大学杰出人才基金资助项目(XJ2021000501)
通讯作者: 肖衡林     E-mail: researchmailbox@163.com;xiaohenglin_0909@163.com
作者简介: 李丽华(1978—),女,教授,博导. 从事加筋土、路基工程、环境岩土工程研究. orcid.org/0000-0001-7688-5552.E-mail: researchmailbox@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李丽华
李孜健
肖衡林
黄少平
刘一鸣

引用本文:

李丽华,李孜健,肖衡林,黄少平,刘一鸣. 稻壳灰-高炉矿渣固化膨胀土工程特性及机理[J]. 浙江大学学报(工学版), 2023, 57(9): 1736-1745.

Li-hua LI,Zi-jian LI,Heng-lin XIAO,Shao-ping HUANG,Yi-ming LIU. Engineering characteristics and mechanism of rice husk ash-ground granulated blast slag cured expansive soil. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1736-1745.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.09.005        https://www.zjujournals.com/eng/CN/Y2023/V57/I9/1736

图 1  试样原材料
样品 wB/%
CaO SiO2 MgO Al2O3 Na2O Fe2O3
稻壳灰 1.3 91.5 0.5 0.2 0.1 0.2
高炉矿渣 42.2 31.3 6.8 14.8
表 1  稻壳灰、高炉矿渣的主要化学成分
图 2  稻壳灰、高炉矿渣的X射线衍射图谱
试样编号 土样类别 wRHA-GGBS/% λ ν/d
L1 素土 7、14、28、60
L2 固化土1) 15 5∶5 7、14、28、60
L3 6∶4
L4 7∶3
L5 8∶2
L6 9∶1
L7 固化土2) 5 最优配比 7、14、28、60
L8 10
L9 15
L10 20
表 2  试样的配合比设计
图 3  试样的无侧限抗压强度试验结果
图 4  试样的无侧限抗压应力-应变曲线
图 5  试样的破坏应变试验结果
图 6  试样的变形模量试验结果
图 7  变形模量与抗压强度的关系
图 8  试样的自由膨胀率试验结果
图 9  典型固化土试样的扫描电镜图
图 10  稻壳灰-高炉矿渣固化膨胀土的X射线衍射图谱
1 刘特洪. 工程建设中的膨胀土问题[M]. 北京: 中国建筑工业出版社, 1997.
2 中国公路学报编辑部 中国路基工程学术研究综述·2021[J]. 中国公路学报, 2021, 34 (3): 1- 49
Editorial Department of China Journal of Highway and Transport Review on China’s subgrade engineering research·2021[J]. China Journal of Highway and Transport, 2021, 34 (3): 1- 49
doi: 10.3969/j.issn.1001-7372.2021.03.001
3 徐永福, 程岩, 唐宏华 膨胀土边坡失稳特征及其防治技术标准化[J]. 中南大学学报: 自然科学版, 2022, 53 (1): 1- 20
XU Yong-fu, CHENG Yan, TANG Hong-hua Failure characteristics of expansive soil slope and standardization of slope slide prevention by geotextile bag[J]. Journal of Central South University: Science and Technology, 2022, 53 (1): 1- 20
4 邹维列, 蔺建国, 韩仲, 等 膨胀土边坡加固技术研究进展[J]. 中南大学学报: 自然科学版, 2022, 53 (1): 126- 139
ZOU Wei-lie, LIN Jian-guo, HAN Zhong, et al Progress on strengthening techniques for expansive soil slopes[J]. Journal of Central South University: Science and Technology, 2022, 53 (1): 126- 139
5 李丽华, 余肖婷, 肖衡林, 等 稻壳灰加筋土力学性能研究[J]. 岩土力学, 2020, 41 (7): 2168- 2178
LI Li-hua, YU Xiao-ting, XIAO Heng-lin, et al Mechanical properties of reinforcement about rice husk ash mixed soil[J]. Rock and Soil Mechanics, 2020, 41 (7): 2168- 2178
doi: 10.16285/j.rsm.2019.0219
6 李丽华, 岳雨薇, 李文涛, 等 稻壳灰固化重金属污染土力学性能及微观结构研究[J]. 铁道科学与工程学报, 2022, 19 (11): 3275- 3282
LI Li-hua, YUE Yu-wei, LI Wen-tao, et al Mechanical properties and microstructure of heavy metal contaminated soil solidified by rice husk ash[J]. Journal of Railway Science and Engineering, 2022, 19 (11): 3275- 3282
doi: 10.19713/j.cnki.43-1423/u.t20211398
7 MA B, CAI K, ZENG X, et al Experimental study on physical-mechanical properties of expansive soil improved by multiple admixtures[J]. Advances in Civil Engineering, 2021, 2021: 5567753
8 宋慧平, 安全, 申午艳, 等 固废基土壤调理剂的制备及其矿区生态修复效果[J]. 环境工程, 2022, 40 (12): 187- 195
SONG Hui-ping, AN Quan, SHEN Wu-yan, et al Preparation of solid waste-based soil conditioners and their ecological remediation effects on mining area[J]. Environmental Engineering, 2022, 40 (12): 187- 195
doi: 10.13205/j.hjgc.202212025
9 陈佩, 吴奥, 别如山 预处理稻壳流化床燃烧制备纳米SiO2的小试实验 [J]. 哈尔滨工业大学学报, 2019, 51 (3): 46- 54
CHEN Pei, WU Ao, BIE Ru-shan Experimental study on pretreated rice husk combustion in bench-scale fluidized bed for the production of nanosilica[J]. Journal of Harbin Institute of Technology, 2019, 51 (3): 46- 54
doi: 10.11918/j.issn.0367-6234.201809147
10 TAHA M M M, FENG C P, AHMED S H S Modification of mechanical properties of expansive soil from north China by using rice husk ash.[J]. Materials, 2021, 14 (11): 2789
doi: 10.3390/ma14112789
11 MA J, SU Y, LIU Y, et al Strength and microfabric of expansive soil improved with rice husk ash and lime[J]. Advances in Civil Engineering, 2020, 2020: 9646205
12 HASSAN M, TAHIR A, KHALID F, et al Improvement in engineering properties of expansive soils using ground granulated blast furnace slag[J]. Journal of the Geological Society of India, 2018, 92: 357- 362
doi: 10.1007/s12594-018-1019-2
13 郭铄 稻壳灰和电石渣改性膨胀土力学性能及作用机理研究[J]. 公路工程, 2020, 45 (3): 210- 215
GUO Shuo Study on mechanical properties and mechanism of expansive soil modified by RHA and CCR[J]. Highway Engineering, 2020, 45 (3): 210- 215
14 周万良, 邓欢 基于NaOH激发矿渣和硅酸盐水泥的功能梯度混凝土的抗氯离子渗透性能[J]. 材料导报, 2022, 36 (Suppl.1): 21100082
ZHOU Wan-liang, DENG Huan Chloride penetration resistance of functionally graded concrete based on NaOH activated slag and Portland cement[J]. Materials Reports, 2022, 36 (Suppl.1): 21100082
15 SHARMA A K, SIVAPULLAIAH P V Ground granulated blast furnace slag amended fly ash as an expansive soil stabilizer[J]. Soils and Foundations, 2016, 56 (2): 205- 212
doi: 10.1016/j.sandf.2016.02.004
16 PATEL Y J, SHAH N Enhancement of the properties of ground granulated blast furnace slag based self compacting geopolymer concrete by incorporating rice husk ash[J]. Construction and Building Materials, 2018, 171: 654- 662
doi: 10.1016/j.conbuildmat.2018.03.166
17 交通运输部公路科学研究院. 公路土工试验规程 JTG 3430—2020 [S]. 北京: [s.n.], 2020.
18 李青, 姚凯, 李俊潼, 等 氢氧化钙对碱矿渣材料硫酸盐结晶破坏的抑制机理[J]. 建筑材料学报, 2023, 26 (4): 437- 442
LI Qing, YAO Kai, LI Jun-tong, et al Inhibition mechanism of calcium hydroxide on sulfate crystallization damage of alkali-activated slag materials[J]. Journal of Building Materials, 2023, 26 (4): 437- 442
doi: 10.3969/j.issn.1007-9629.2023.04.014
19 陈瑞敏, 简文彬, 张小芳, 等 CSFG-FR协同作用改良淤泥固化土性能试验研究[J]. 岩土力学, 2022, 43 (4): 1020- 1030
CHEN Rui-min, JIAN Wen-bin, ZHANG Xiao-fang, et al Experimental study on performance of sludge stabilized by CSFG-FR synergy[J]. Rock and Soil Mechanics, 2022, 43 (4): 1020- 1030
doi: 10.16285/j.rsm.2021.1017
20 杨星. 稻壳灰-水泥改良淤泥土力学性能及微观机理分析[D]. 武汉: 湖北工业大学, 2021.
YANG Xing. Mechanical properties and microscopic mechanism of rice husk ash-cement solidified sludge [D]. Wuhan: Hubei University of Technology, 2021.
21 易富, 管茂成, 李军, 等 稻壳灰-地聚物固化土力学特性及机理分析[J]. 水文地质工程地质, 2022, 49 (2): 94- 101
YI Fu, GUAN Mao-cheng, LI Jun, et al Mechanical properties and mechanism analyses of rice husk ash geopolymer solidified soil[J]. Hydrogeology and Engineering Geology, 2022, 49 (2): 94- 101
doi: 10.16030/j.cnki.issn.1000-3665.202107021
22 Building Research Establishment. EuroSoilStab: design guide soft soil stabilisation [M]. [S.l.]: BRE Press, 2002.
23 张亭亭, 李江山, 王平, 等 磷酸镁水泥固化铅污染土的应力−应变特性研究[J]. 岩土力学, 2016, 37 (Suppl.1): 215- 225
ZHANG Ting-ting, LI Jiang-shan, WANG Ping, et al Experimental study of stress-strain properties of lead contaminated soils treated by magnesium phosphate cement[J]. Rock and Soil Mechanics, 2016, 37 (Suppl.1): 215- 225
24 李关洋, 顾凯, 王翔, 等 含裂隙膨胀土无侧限抗压强度特征试验研究[J]. 水文地质工程地质, 2022, 49 (4): 62- 70
LI Guan-yang, GU Kai, WANG Xiang, et al An experimental study of the unconfined compressive strength characteristics of the expansive soil with cracks[J]. Hydrogeology and Engineering Geology, 2022, 49 (4): 62- 70
doi: 10.16030/j.cnki.issn.1000-3665.202111033
25 刘宇翼. 电石渣-稻壳灰基胶凝材料固化膨胀土机理及其物理力学特性研究[D]. 徐州: 中国矿业大学, 2019.
LIU Yu-yi. Study on mechanism and physical-mechanical properties of stabilized expansive soil by cementitious material from calcium carbide residue and rice husk ash [D]. Xuzhou: China University of Mining and Technology, 2019.
26 张小芳, 陈瑞敏, 简文彬 水泥-矿渣-粉煤灰固化淤泥的水分转化规律及其固化机理研究[J]. 工程地质学报, 2023, 31 (1): 102- 112
ZHANG Xiao-fang, CHEN Rui-min, JIAN Wen-bin Study on water conversion law and solidification mechanism of cement-slag-fly ash solidified silt[J]. Journal of Engineering Geology, 2023, 31 (1): 102- 112
doi: 10.13544/j.cnki.jeg.2020-378
27 张国防, 王博, 张海旭, 等 OPC-GBFS-NS体系土体硬化剂固化土壤的作用效果研究[J]. 建筑材料学报, 2022, 25 (1): 61- 67
ZHANG Guo-fang, WANG Bo, ZHANG Hai-xu, et al Effects of OPC-GBFS-NS system based soil stabilizer on soil stabilization[J]. Journal of Building Materials, 2022, 25 (1): 61- 67
doi: 10.3969/j.issn.1007-9629.2022.01.009
28 WANG H, ZHU Z, PU S, et al Solidification/stabilization of Pb2+ and Cd2+ contaminated soil using fly ash and GGBS based geopolymer [J]. Arabian Journal for Science and Engineering, 2022, 47: 4385- 4400
doi: 10.1007/s13369-021-06109-1
29 LIANG G, LIU T, LI H, et al A novel synthesis of lightweight and high-strength green geopolymer foamed material by rice husk ash and ground-granulated blast-furnace slag[J]. Resources, Conservation and Recycling, 2022, 176: 105922
doi: 10.1016/j.resconrec.2021.105922
[1] 庄心善,周睦凯,周荣,陶高梁. EPS改良膨胀土孔隙特征与滞回曲线形态[J]. 浙江大学学报(工学版), 2022, 56(7): 1353-1362, 1403.
[2] 庄心善,赵汉文,王俊翔,黄勇杰. 合肥膨胀土动弹性模量与阻尼比试验研究[J]. 浙江大学学报(工学版), 2020, 54(4): 759-766.
[3] 杨果林, 段君义, 杨啸, 徐亚斌. 降雨与自然状态下膨胀土基床的振动特性[J]. 浙江大学学报(工学版), 2016, 50(12): 2319-2327.
[4] 詹良通. 非饱和膨胀土边坡中土水相互作用机理[J]. J4, 2006, 40(3): 494-500.
[5] 王文军 朱向荣 方鹏飞. 纳米硅粉水泥土固化机理研究[J]. J4, 2005, 39(1): 148-153.