Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (10): 2019-2027    DOI: 10.3785/j.issn.1008-973X.2022.10.013
土木工程、交通工程、海洋工程     
DMC复合地基工后沉降可靠性分析及设计优化
陈伟航1(),罗强1,2,王腾飞1,2,*(),张文生1,蒋良潍1,2
1. 西南交通大学 土木工程学院,四川 成都 610031
2. 高速铁路线路工程教育部重点实验室,四川 成都 610031
Reliability analysis of post-construction settlement of DMC composite foundation and design optimization
Wei-hang CHEN1(),Qiang LUO1,2,Teng-fei WANG1,2,*(),Wen-sheng ZHANG1,Liang-wei JIANG1,2
1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
2. MOE Key Laboratory of High-Speed Railway Engineering, Chengdu 610031, China
 全文: PDF(2113 KB)   HTML
摘要:

针对确定性分析方法进行水泥土搅拌桩(DMC)复合地基工后沉降控制存在一定风险的问题,基于Monte Carlo dropout神经网络(ANN_MCD)架构的随机变换,利用模型输出随机性表征土体参数的不确定性. 结合有限元与代理模型,开展考虑土体参数不确定性的DMC复合地基工后沉降高效计算,获得不同桩长、桩径、桩间距、垫层厚度参数组合下的工后沉降概率分布. 以路基正常使用极限状态下的目标可靠指标,确定工后沉降界限值,建立沉降与地基处理成本的非线性映射关系,结合成本效能指标进行结构设计优化. 研究表明,ANN_MCD模型可以依据地基软黏土塑性指数Ip,推演修正剑桥模型参数的不确定性,预测参数的95%置信区间与试验值吻合良好. 利用土体与结构参数独立进行特征提取的双输入层ANN代理模型,可以有效地避免网络结构冗余,实现DMC复合地基工后沉降S的高效高精度预测. S与最低建造成本符合Logistic曲线形式,成本效能分界值Cv位于曲率最大点,设计优化方案应位于成本≤Cv的高效费比区.

关键词: 深度学习DMC复合地基工后沉降可靠性分析设计优化    
Abstract:

The stochastic nature of the model was used to characterize the uncertainty of soil parameters based on the random transformation of an artificial neural network architecture incorporating Monte Carlo Dropout (ANN_MCD) in order to address the issue that using deterministic analysis method is risky to control the post-construction settlement of ground improved by deep mixed columns (DMCs). The predictions were performed efficiently for post-construction settlement of ground improved by DMCs considering the uncertainty of soil parameters by combining the finite element simulations with a surrogate model. The probability distribution of post-construction settlement with different combinations of pile length, pile diameter, pile spacing and cushion thickness was obtained. The limit value of the post-construction settlement was determined from the target reliability index for serviceability limit state, and linked to the cost of ground improvement based on the nonlinear mapping. The structural design optimization was finally conducted by considering the benefit–cost ratio. The uncertainty of modified Cam-Clay model parameters can be derived from the plasticity index Ip of soft clay with ANN_MCD-based model, with the 95% prediction interval matching closely with the experimental data. The ANN-based model with a separated input layer can individually extract features from soil and structural parameters, avoiding a redundant architecture of ANN and achieving efficient and precise predictions for post-construction settlement of DMC composite foundation. The relationship between post-construction settlement and the lowest construction cost can be fitted by a Logistic curve. The threshold of benefit-cost ratio corresponds to the maximum curvature point of the Logistic curve, and the optimized design should be on the side of cost lower than Cv (highly cost-effective).

Key words: deep learning    DMC composite foundation    post-construction settlement    reliability analysis    design optimization
收稿日期: 2021-11-12 出版日期: 2022-10-25
CLC:  TU 443  
基金资助: 国家自然科学基金资助项目(52078435, 41901073);四川省科技计划资助项目(2021YJ0001)
通讯作者: 王腾飞     E-mail: chenweihang@my.swjtu.edu.cn;w@swjtu.edu.cn
作者简介: 陈伟航(1997—),男,硕士生,从事路基工程数据挖掘的研究. orcid.org/0000-0003-1380-7631. E-mail: chenweihang@my.swjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈伟航
罗强
王腾飞
张文生
蒋良潍

引用本文:

陈伟航,罗强,王腾飞,张文生,蒋良潍. DMC复合地基工后沉降可靠性分析及设计优化[J]. 浙江大学学报(工学版), 2022, 56(10): 2019-2027.

Wei-hang CHEN,Qiang LUO,Teng-fei WANG,Wen-sheng ZHANG,Liang-wei JIANG. Reliability analysis of post-construction settlement of DMC composite foundation and design optimization. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2019-2027.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.10.013        https://www.zjujournals.com/eng/CN/Y2022/V56/I10/2019

图 1  DMC复合地基的分析模型
图 2  ANN_MCD模型结构的示意图
图 3  不同Ip下ANN_MCD模型预测效果
图 4  不同Dropout概率的M和κ预测效果
图 5  EA法桩的等效示意图
材料 模型 E/MPa $\nu $ c/kPa $\varphi $/(°) λ $ \kappa $ M e0 kv/(10?4 m·d?1) kh/(10?4 m·d?1)
地基回填土 MCC 0.15 10 $ \kappa $ 0.025 1.2 1.5 6 9.1
软黏土1 MCC 0.15 10 $\kappa $ ANN_MCD 3.1 4.4 6.6
软黏土2 MCC 0.15 10 $ \kappa $ ANN_MCD 2.49 4.6 6.9
硬黏土 MCC 0.15 10 $ \kappa $ 0.012 1.2 0.8 25 25
黏砂土 MC 20 0.10 20 35 0.7 250 250
加筋垫层 MC 125.8 0.32 75 42
路堤填土 MC 1 0.40 20 35
DMC MC 100 0.15 500 4.6 4.6
表 1  有限元模型的材料参数[14]
图 6  ANN_MCD预测的κ频数分布
图 7  ANN_MCD预测的M频数分布
图 8  FEM值与实测值的对比
参数 最小值 最大值 均值 标准差 增量
?1 /10?2 6.53 10.71 8.77 0.96
M1 0.53 1.71 1.07 0.19
?2 /10?2 2.64 4.76 3.77 0.49
M2 0.83 1.55 1.19 0.10
lp /m 6.00 12.00 1
d /m 0.50 1.50 0.1
a /m 1.60 2.50 0.1
h /m 0.20 0.90 0.1
表 2  训练和测试样本参数统计
图 9  ANN代理模型的结构
图 10  ANN代理模型的训练效果
图 11  结构和土性参数对工后沉降的敏感度
序号 lp/m d/m a/m h/m Sp/m Q/(元·m?1)
现场 10.0 1.2 1.9 0.5 0.265 8996
1 11.0 0.8 2.5 0.8 0.264 5276
2 12.0 0.8 2.5 0.6 0.254 5185
3 11.0 0.8 2.5 0.9 0.234 5501
4 12.0 0.8 2.5 0.7 0.226 5410
5 12.0 0.8 2.5 0.8 0.200 5634
6 12.0 0.9 2.5 0.7 0.197 5803
7 12.0 0.8 2.5 0.9 0.179 5859
8 12.0 0.9 2.5 0.8 0.171 6028
9 12.0 0.9 2.5 0.9 0.149 6252
10 12.0 1.0 2.5 0.8 0.140 6461
11 12.0 1.0 2.5 0.9 0.119 6686
12 12.0 1.1 2.5 0.8 0.117 6939
13 12.0 1.1 2.5 0.9 0.096 7164
14 12.0 1.2 2.5 0.8 0.096 7466
15 12.0 1.2 2.5 0.9 0.085 7691
16 12.0 1.3 2.5 0.8 0.086 8047
17 12.0 1.3 2.5 0.9 0.081 8272
18 12.0 1.4 2.5 0.7 0.086 8463
19 12.0 1.4 2.5 0.8 0.081 8688
20 12.0 1.4 2.5 0.9 0.078 8913
表 3  优选区域的优化方案与建造成本
图 12  考虑土体参数不确定性的工后沉降分布
图 13  地基工后沉降与建造成本的关系
1 DANG C C, DANG L C. Numerical investigation on the stability of soil-cement columns reinforced riverbank [C]// Information Technology in Geo-Engineering. Switzerland: Springer, 2020.
2 WIJERATHNA M, LIYANAPATHIRANA D S, LEO C J Analytical solution for the consolidation behavior of deep cement mixed column-improved ground[J]. International Journal of Geomechanics, 2017, 17 (9): 04017065
doi: 10.1061/(ASCE)GM.1943-5622.0000954
3 陈昌富, 邱琳淇, 毛凤山, 等 基于加权扰动共生生物搜索算法桩网复合地基优化设计[J]. 岩土力学, 2019, 40 (11): 4477- 4485
CHEN Chang-fu, QIU Lin-qi, MAO Feng-shan, et al Design optimization of pile-net composite foundation based on perturbation-weighted symbiotic organisms search (PWSOS) algorithm[J]. Rock and Soil Mechanics, 2019, 40 (11): 4477- 4485
4 CHIKAHIRO Y, ARIO I, PAWLOWSKI P, et al Optimization of reinforcement layout of scissor-type bridge using differential evolution algorithm[J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34 (6): 523- 538
doi: 10.1111/mice.12432
5 李顺群, 张建伟, 夏锦红 原状土的剑桥模型和修正剑桥模型[J]. 岩土力学, 2015, 36 (Supple.2): 215- 220
LI Shun-qun, ZHANG Jian-wei, XIA Jin-hong An improvement on Cam-clay model and modified Cam-clay model for intact soil[J]. Rock and Soil Mechanics, 2015, 36 (Supple.2): 215- 220
doi: 10.16285/j.rsm.2015.S2.028
6 陈建峰, 孙红, 石振明, 等 修正剑桥渗流耦合模型参数的估计[J]. 同济大学学报: 自然科学版, 2003, 31 (5): 544- 548
CHEN Jian-feng, SUN Hong, SHI Zhen-ming, et al Estimation of parameters of modified Cam-clay model coupling Biot theory[J]. Journal of Tongji University: Natural Science, 2003, 31 (5): 544- 548
7 KATSUHIKO A, HIDEKI O, KEISUKE K, et al Application of back-analysis to several test embankments on soft clay deposits[J]. Soil and Foundations, 1986, 26 (2): 60- 72
doi: 10.3208/sandf1972.26.2_60
8 AKIO N, TAKESHI X, OSAMU K Constitutive parameters estimated by plasticity index[J]. Journal of Geotechnical Engineering, 1988, 114 (7): 844- 858
doi: 10.1061/(ASCE)0733-9410(1988)114:7(844)
9 GAL Y, GHAHRAMANI Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning [C]// International Conference on Machine Learning. New York: MIT Press, 2016: 1050-1069.
10 ZHANG P, YIN Z Y, JIN Y F Bayesian neural network-based uncertainty modelling: application to soil compressibility and undrained shear strength prediction[J]. Canadian Geotechnical Journal, 2021, 59 (4): 546- 557
11 ZHANG P, JIN Y F, YIN Z Y Machine learning–based uncertainty modelling of mechanical properties of soft clays relating to time-dependent behavior and its application[J]. International Journal for Numerical and Analytical Methods Geomechanics, 2021, 45 (11): 1588- 1602
doi: 10.1002/nag.3215
12 张天龙, 曾鹏, 李天斌, 等 基于主动学习径向基函数的边坡系统可靠度分析[J]. 岩土力学, 2020, 41 (9): 3098- 3108
ZHANG Tian-long, ZENG Peng, LI Tian-bin, et al System reliability analyses of slopes based on active-learning radial basis function[J]. Rock and Soil Mechanics, 2020, 41 (9): 3098- 3108
doi: 10.16285/j.rsm.2019.1695
13 毛凤山, 陈昌富, 朱世民 代理模型方法及其在岩土工程中的应用综述[J]. 地基处理, 2020, 31 (4): 295- 306
MAO Feng-shan, CHEN Chang-fu, ZHU Shi-min Surrogate model method and its application in geotechnical engineering[J]. Chinese Journal of Ground Improvement, 2020, 31 (4): 295- 306
14 DANG L C, DANG C C, KHABBAZ H. Modelling of columns and fibre-reinforced load-transfer platform- supported embankments [C]// Ground Improvement, 2020, 173(4): 197-215.
15 ANGGRAINI V, ASADI A, HUAT B B K, et al Performance of chemically treated natural fibres and lime in soft soil for the utilisation as pile-supported Earth platform[J]. International Journal of Geosynthetics and Ground Engineering, 2015, 1 (3): 1- 14
16 CHAI J C, SHRESTHA S, HINO T, et al 2D and 3D analyses of an embankment on clay improved by soil−cement columns[J]. Computers and Geotechnics, 2015, 68: 28- 37
doi: 10.1016/j.compgeo.2015.03.014
17 JELUŠIČ P, ŽLENDER B Optimal design of piled embankments with basal reinforcement[J]. Geosynthetics International, 2018, 25 (2): 150- 163
doi: 10.1680/jgein.17.00039
18 邓永锋, 洪振舜, 刘松玉, 等 搅拌桩复合地基平面模拟的简化方法探讨[J]. 岩土力学, 2005, 26 (Supple.1): 209- 212
DENG Yong-feng, HONG Zhun-shun, LIU Song-yu, et al A planar simplified method for three-dimension cement-soil mixing piles composite foundation with FEM numerical analysis[J]. Rock and Soil Mechanics, 2005, 26 (Supple.1): 209- 212
doi: 10.16285/j.rsm.2005.s1.050
19 CHEN C, MAO F, ZHANG G, et al. Settlement-based cost optimization of geogrid-reinforced pile-supported foundation[J]. Geosynthetics International, 2021, 28 (5): 541- 557
doi: 10.1680/jgein.21.00002
20 国家铁路局. 铁路工程结构可靠性设计统一标准: GB 50216—2019 [S]. 北京: 中国计划出版社, 2019.
21 浙江省住房和城乡建设厅. 复合地基技术规范: GB/T 50783—2012 [S]. 北京: 中国计划出版社, 2012.
[1] 刘近贞,陈飞,熊慧. 多尺度残差网络模型的开放式电阻抗成像算法[J]. 浙江大学学报(工学版), 2022, 56(9): 1789-1795.
[2] 王万良,王铁军,陈嘉诚,尤文波. 融合多尺度和多头注意力的医疗图像分割方法[J]. 浙江大学学报(工学版), 2022, 56(9): 1796-1805.
[3] 郝琨,王阔,王贝贝. 基于改进Mobilenet-YOLOv3的轻量级水下生物检测算法[J]. 浙江大学学报(工学版), 2022, 56(8): 1622-1632.
[4] 夏杰锋,唐武勤,杨强. 光伏航拍红外图像的热斑自动检测方法[J]. 浙江大学学报(工学版), 2022, 56(8): 1640-1647.
[5] 赵永胜,李瑞祥,牛娜娜,赵志勇. 数字孪生驱动的机身形状控制方法[J]. 浙江大学学报(工学版), 2022, 56(7): 1457-1463.
[6] 何立,庞善民. 结合年龄监督和人脸先验的语音-人脸图像重建[J]. 浙江大学学报(工学版), 2022, 56(5): 1006-1016.
[7] 张雪芹,李天任. 基于Cycle-GAN和改进DPN网络的乳腺癌病理图像分类[J]. 浙江大学学报(工学版), 2022, 56(4): 727-735.
[8] 陈伟航,罗强,王腾飞,蒋良潍,张良. 基于Bi-LSTM的非等时距路基工后沉降滚动预测[J]. 浙江大学学报(工学版), 2022, 56(4): 683-691.
[9] 褚晶辉,史李栋,井佩光,吕卫. 适用于目标检测的上下文感知知识蒸馏网络[J]. 浙江大学学报(工学版), 2022, 56(3): 503-509.
[10] 程若然,赵晓丽,周浩军,叶翰辰. 基于深度学习的中文字体风格转换研究综述[J]. 浙江大学学报(工学版), 2022, 56(3): 510-519, 530.
[11] 彭向东,潘从成,柯泽浚,朱华强,周肖. 基于并行架构和时空注意力机制的心电分类方法[J]. 浙江大学学报(工学版), 2022, 56(10): 1912-1923.
[12] 杨栋杰,高贤君,冉树浩,张广斌,王萍,杨元维. 基于多重多尺度融合注意力网络的建筑物提取[J]. 浙江大学学报(工学版), 2022, 56(10): 1924-1934.
[13] 陈彤,郭剑锋,韩心中,谢学立,席建祥. 基于生成对抗模型的可见光-红外图像匹配方法[J]. 浙江大学学报(工学版), 2022, 56(1): 63-74.
[14] 任松,朱倩雯,涂歆玥,邓超,王小书. 基于深度学习的公路隧道衬砌病害识别方法[J]. 浙江大学学报(工学版), 2022, 56(1): 92-99.
[15] 刘兴,余建波. 注意力卷积GRU自编码器及其在工业过程监控的应用[J]. 浙江大学学报(工学版), 2021, 55(9): 1643-1651.