Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (4): 683-691    DOI: 10.3785/j.issn.1008-973X.2022.04.007
交通工程、土木工程     
基于Bi-LSTM的非等时距路基工后沉降滚动预测
陈伟航1(),罗强1,2,王腾飞1,2,*(),蒋良潍1,2,张良1,2
1. 西南交通大学 土木工程学院,四川 成都 610031
2. 高速铁路线路工程教育部重点实验室,四川 成都 610031
Bi-LSTM based rolling forecast of subgrade post-construction settlement with unevenly spaced time series
Wei-hang CHEN1(),Qiang LUO1,2,Teng-fei WANG1,2,*(),Liang-wei JIANG1,2,Liang ZHANG1,2
1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
2. MOE Key Laboratory of High-Speed Railway Engineering, Chengdu 610031, China
 全文: PDF(1784 KB)   HTML
摘要:

为了实现路基工后沉降的早期、精准预测,提出基于双向长短期记忆网络(Bi-LSTM)的路基沉降预测技术. 采用Akima法将观测数据内插为适应时序分析法的等时距序列,提取“填土高度-时间-地基沉降”曲线中的6个影响因素作为变量训练Bi-LSTM模型,结合滚动迭代方法实现沉降预测的后延更新. 研究表明,利用深度学习技术可以有效地利用路基施工期信息,增加训练样本量,提升沉降早期预测的可靠性. Bi-LSTM模型对观测信息进行双向特征提取,同等样本量下的预测效果更精确. 依托6个中等压缩性土地基和1个复合地基监测断面信息,仅利用路堤填筑期及工后3个月数据,沉降预测的均方根误差 (RMSE) 和平均绝对百分误差 (MAPE) 平均值可以控制为1.19 mm、1.04%.

关键词: 双向长短期记忆网络(Bi-LSTM)路基工后沉降非等时距序列滚动预测施工填筑信息    
Abstract:

A bi-directional long short-term memory (Bi-LSTM)-based technique was proposed for subgrade settlement prediction in order to achieve early and accurate prediction of post-construction settlement of subgrade. The observational data was transformed into equally spaced observations using interpolation, namely the Akima method, for time series analysis. Six contributing factors were extracted from the ‘fill height-time-foundation settlement’ curves, and were used as input variables for training a Bi-LSTM model. Settlement predictions can be sequentially updated by combining with the rolling forecast technique. Results show that deep learning can efficiently use subgrade construction information, increase the sample size, and improve the reliability of early prediction. The Bi-LSTM model achieves bidirectional feature extraction on observational data and makes more accurate predictions in the same sample size conditions. The information during construction and 3-month post-construction period was used based on observations of six subsoil foundations of medium compressibility and one composite foundation. Predicted results with mean values of root mean square error (RMSE) and mean absolute percentage error (MAPE) were 1.19 mm and 1.04%, respectively.

Key words: bi-directional long short-term memory (Bi-LSTM)    post-construction settlement for subgrade    unevenly spaced time series    rolling forecast    construction information
收稿日期: 2021-05-22 出版日期: 2022-04-24
CLC:  TU 433  
基金资助: 国家自然科学基金资助项目(52078435, 41901073);四川省科技计划资助项目(2021YJ0001)
通讯作者: 王腾飞     E-mail: chenweihang@my.swjtu.edu.cn;w@swjtu.edu.cn
作者简介: 陈伟航(1997—),男,硕士生,从事路基工程数据挖掘的研究. orcid.org/0000-0003-1380-7631.E-mail: chenweihang@my.swjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈伟航
罗强
王腾飞
蒋良潍
张良

引用本文:

陈伟航,罗强,王腾飞,蒋良潍,张良. 基于Bi-LSTM的非等时距路基工后沉降滚动预测[J]. 浙江大学学报(工学版), 2022, 56(4): 683-691.

Wei-hang CHEN,Qiang LUO,Teng-fei WANG,Liang-wei JIANG,Liang ZHANG. Bi-LSTM based rolling forecast of subgrade post-construction settlement with unevenly spaced time series. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 683-691.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.04.007        https://www.zjujournals.com/eng/CN/Y2022/V56/I4/683

图 1  神经网络结构的示意图
图 2  工后沉降预测方法
图 3  “填土高度-时间-地基沉降”曲线
图 4  沉降预测Bi-LSTM模型网络结构
图 5  测试路基断面
图 6  观测数据的修正与等时距转化
断面 $v{'_{t - 3}} $ vt Ht St?3 St?6 St?9
DK1806+925 0.59 0.96 0.58 0.99 0.99 0.98
DK1806+900 0.60 0.91 0.60 0.99 0.99 0.98
DK1806+800 0.85 0.95 0.85 0.99 0.99 0.98
DK1806+775 0.76 0.87 0.77 1.00 0.99 0.99
DK1807+250 0.57 0.95 0.58 0.99 0.98 0.98
DK1807+150 0.55 0.95 0.55 0.99 0.98 0.98
表 1  各断面的灰色关联度系数分布
图 7  Bi-LSTM模型的训练过程
图 8  地基沉降观测值与预测值的对比
图 9  修正BP神经网络模型与双曲线模型的预测结果
图 10  不同训练集样本下Bi-LSTM模型预测结果
图 11  不同训练集样本下Bi-LSTM模型的预测绝对误差
图 12  其他断面地基沉降Bi-LSTM模型的预测结果
1 TAN S A Hyperbolic method for settlements in clays with vertical drains[J]. Canadian Geotechnical Journal, 1994, 31 (31): 125- 131
2 ASAOKA A Observational procedure of settlement prediction[J]. Soils and Foundations, 1978, 18 (4): 30- 34
3 冷伍明, 杨奇, 聂如松, 等 高速铁路桥梁桩基工后沉降组合预测研究[J]. 岩土力学, 2011, 32 (11): 3341- 3348
LENG Wu-ming, YANG Qi, NIE Ru-song, et al Study of post-construction settlement combination forecast method of high-speed railway bridge pile foundation[J]. Rock and Soil Mechanics, 2011, 32 (11): 3341- 3348
doi: 10.3969/j.issn.1000-7598.2011.11.023
4 BATES J M, GRANGER C W J The combination of forecasts[J]. Operational Research Quarterly, 1969, 20 (4): 451- 468
doi: 10.1057/jors.1969.103
5 曹文贵, 谭涛 考虑数据异常及新旧程度影响有界性的地基沉降预测方法[J]. 湖南大学学报:自然科学版, 2020, 47 (3): 37- 43
CAO Wen-gui, TAN Tao A prediction method of foundation settlement considering anomaly and newness-oldness degree influence boundedness of measured data[J]. Journal of Hunan University: Natural Sciences, 2020, 47 (3): 37- 43
6 ZHANG P, WU H N, CHEN R P, et al Hybrid meta-heuristic and machine learning algorithms for tunneling-induced settlement prediction: a comparative study[J]. Tunnelling and Underground Space Technology, 2020, 99 (6): 103383
7 HUANG C F, LI Q, WU S C, et al Application of the Richards model for settlement prediction based on a bidirectional difference-weighted least-squares method[J]. Arabian Journal for Science and Engineering, 2018, 43 (10): 5057- 5065
doi: 10.1007/s13369-017-2909-0
8 LV Y, LIU T T, WEI S D, et al Study on settlement prediction model of deep foundation pit in sand and pebble strata based on grey theory and BP neural network[J]. Arabian Journal of Geosciences, 2020, 13 (23): 1238
doi: 10.1007/s12517-020-06232-7
9 PARK H I, KIM K S, KIM H Y Field performance of a genetic algorithm in the settlement prediction of a thick soft clay deposit in the southern part of the Korean peninsula[J]. Engineering Geology, 2015, 196 (1): 150- 157
10 刘文豪, 黎曦, 胡伍生 基于神经网络和双曲线混合模型的高速公路沉降预测[J]. 东南大学学报:自然科学版, 2013, 43 (Supple.2): 380- 383
LIU Wen-hao, LI Xi, HU Wu-sheng Highway subsidence prediction based on neural network and hyperbolic hybrid model[J]. Journal of Southeast University: Natural Science Edition, 2013, 43 (Supple.2): 380- 383
11 ZHANG P, YANG Y, YIN Z Y BiLSTM-based soil–structure interface modeling[J]. International Journal of Geomechanics, 2021, 21 (7): 1- 9
12 YANG B B, YIN K L, LACASSE S, et al Time series analysis and long short-term memory neural network to predict landslide displacement[J]. Landslides, 2019, 16 (1): 677- 694
13 周小雄, 龚秋明, 殷丽君, 等 基于BLSTM-AM模型的TBM稳定段掘进参数预测[J]. 岩石力学与工程学报, 2020, 39 (Supple.2): 3505- 3515
ZHOU Xiao-xiong, GONG Qiu-ming, YIN Li-jun, et al Predicting boring parameters of TBM stable stage based on BLSTM networks combined with attention mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39 (Supple.2): 3505- 3515
14 李洛宾, 龚晓南, 甘晓露, 等 基于循环神经网络的盾构隧道引发地面最大沉降预测[J]. 土木工程学报, 2020, 51 (Supple.1): 13- 19
LI Luo-bin, GONG Xiao-nan, GAN Xiao-lu, et al Prediction of maximum ground settlement induced by shield tunneling based on recurrent neural network[J]. China Civil Engineering Journal, 2020, 51 (Supple.1): 13- 19
15 HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
16 YIN J, DENG Z, INES A V M, et al Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)[J]. Agricultural Water Management, 2020, 242: 106386
doi: 10.1016/j.agwat.2020.106386
17 AKIMA H A new method of interpolation and smooth curve fitting based on local procedures[J]. Journal of Association for Computing Machinery, 1970, 17 (4): 589- 602
doi: 10.1145/321607.321609
18 WANG Z Z, XIAO C L, GOH S H, et al Metamodel-based reliability analysis in spatially variable soils using convolutional neural networks[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147 (3): 04021003
doi: 10.1061/(ASCE)GT.1943-5606.0002486
19 罗强, 魏永幸. 高速铁路路基[M]. 北京: 中国铁道出版社有限公司, 2021: 192–199.
[1] 丁绚晨,陈育民,张鑫磊. 微生物加固钙质砂环剪试验研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1690-1696.
[2] 谭青, 张逸超, 夏毅敏, 高浩. TBM盘形滚刀切削饱水岩石试验研究[J]. 浙江大学学报(工学版), 2017, 51(5): 914-921.
[3] 李飞, 朱鸿鹄, 张诚成, 施斌. 地基变形光纤光栅监测可行性的试验研究[J]. 浙江大学学报(工学版), 2017, 51(1): 204-211.
[4] 许烨霜, 沈水龙, 马磊. 地下构筑物对地下水渗流的阻挡效应[J]. J4, 2010, 44(10): 1902-1906.
[5] 苏万鑫, 谢康和. 土水特征曲线为直线的非饱和土一维固结计算[J]. J4, 2010, 44(1): 150-155.