计算机技术 |
|
|
|
|
基于多维协同注意力的双支特征联合去雾网络 |
杨燕( ),晁丽鹏 |
兰州交通大学 电子与信息工程学院,甘肃 兰州 730070 |
|
A two-branch feature joint dehazing network based on multidimensional collaborative attention |
Yan YANG( ),Lipeng CHAO |
School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China |
1 |
吴迪, 朱青松 图像去雾的最新研究进展[J]. 自动化学报, 2015, 41 (2): 221- 239 WU Di, ZHU Qingsong The latest research progress of image dehazing[J]. Acta Automatica Sinica, 2015, 41 (2): 221- 239
|
2 |
TAREL J P, HAUTIÈRE N. Fast visibility restoration from a single color or gray level image [C]// IEEE 12th International Conference on Computer Vision. Kyoto: IEEE, 2009: 2201–2208.
|
3 |
MENG G, WANG Y, DUAN J, et al. Efficient image dehazing with boundary constraint and contextual regularization [C]// IEEE International Conference on Computer Vision. Sydney: IEEE, 2013: 617–624.
|
4 |
覃宏超, 李炎炎, 龙伟, 等 基于引导滤波和暗原色先验理论透射率估值的视频去雾算法[J]. 浙江大学学报: 工学版, 2018, 52 (7): 1302- 1309 QIN Hongchao, LI Yanyan, LONG Wei, et al Real-time video dehazing using guided filtering and transmissivity estimated based on dark channel prior theory[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (7): 1302- 1309
|
5 |
NAYAR S K, NARASIMHAN S G. Vision in bad weather [C]// 7th IEEE International Conference on Computer Vision. Kerkyra: IEEE, 1999: 820–827.
|
6 |
NARASIMHAN S G, NAYAR S K. Removing weather effects from monochrome images [C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai: IEEE, 2001: II.
|
7 |
LIHE Z, HE J, YUAN Q, et al PhDnet: a novel physic-aware dehazing network for remote sensing images[J]. Information Fusion, 2024, 106: 102277
doi: 10.1016/j.inffus.2024.102277
|
8 |
HE K, SUN J, TANG X. Single image haze removal using dark channel prior [C]// IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 1956–1963.
|
9 |
ZHU Q, MAI J, SHAO L A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015, 24 (11): 3522- 3533
doi: 10.1109/TIP.2015.2446191
|
10 |
CAI B, XU X, JIA K, et al DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25 (11): 5187- 5198
|
11 |
LI B, PENG X, WANG Z, et al. AOD-net: all-in-one dehazing network [C]// IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 4780–4788.
|
12 |
HE K, SUN J, TANG X Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (6): 1397- 1409
doi: 10.1109/TPAMI.2012.213
|
13 |
张登银, 鞠铭烨, 王雪梅 一种基于暗通道先验的快速图像去雾算法[J]. 电子学报, 2015, 43 (7): 1437- 1443 ZHANG Dengyin, JU Mingye, WANG Xuemei A fast image daze removal algorithm using dark channel prior[J]. Acta Electronica Sinica, 2015, 43 (7): 1437- 1443
doi: 10.3969/j.issn.0372-2112.2015.07.029
|
14 |
JU M, DING C, GUO Y J, et al IDGCP: image dehazing based on gamma correction prior[J]. IEEE Transactions on Image Processing, 2019, 29: 3104- 3118
|
15 |
ZHANG J, TAO D FAMED-net: a fast and accurate multi-scale end-to-end dehazing network[J]. IEEE Transactions on Image Processing, 2020, 29: 72- 84
doi: 10.1109/TIP.2019.2922837
|
16 |
REN W, MA L, ZHANG J, et al. Gated fusion network for single image dehazing [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3253–3261.
|
17 |
LIU X, MA Y, SHI Z, et al. GridDehazeNet: attention-based multi-scale network for image dehazing [C]// IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 7313–7322.
|
18 |
DAS S D, DUTTA S. Fast deep multi-patch hierarchical network for nonhomogeneous image dehazing [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020: 1994–2001.
|
19 |
BALLA P K, KUMAR A, PANDEY R A 4-channelled hazy image input generation and deep learning-based single image dehazing[J]. Journal of Visual Communication and Image Representation, 2024, 100: 104099
doi: 10.1016/j.jvcir.2024.104099
|
20 |
QIN X, WANG Z, BAI Y, et al FFA-net: feature fusion attention network for single image dehazing[J]. AAAI Conference on Artificial Intelligence, 2020, 34 (7): 11908- 11915
doi: 10.1609/aaai.v34i07.6865
|
21 |
SHAO Y, LI L, REN W, et al. Domain adaptation for image dehazing [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2805–2814.
|
22 |
SONG Y, HE Z, QIAN H, et al Vision transformers for single image dehazing[J]. IEEE Transactions on Image Processing, 2023, 32: 1927- 1941
doi: 10.1109/TIP.2023.3256763
|
23 |
YU Y, ZHANG Y, CHENG Z, et al MCA: multidimensional collaborative attention in deep convolutional neural networks for image recognition[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 107079
doi: 10.1016/j.engappai.2023.107079
|
24 |
ZHANG Y, TIAN Y, KONG Y, et al. Residual dense network for image super-resolution [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2472–2481.
|
25 |
YAN Q, GONG D, SHI Q, et al. Attention-guided network for ghost-free high dynamic range imaging [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 1751–1760.
|
26 |
杨爱萍, 刘瑾, 邢金娜, 等 基于内容特征和风格特征融合的单幅图像去雾网络[J]. 自动化学报, 2023, 49 (4): 769- 777 YANG Aiping, LIU Jin, XING Jinna, et al Content feature and style feature fusion network for single image dehazing[J]. Acta Automatica Sinica, 2023, 49 (4): 769- 777
|
27 |
WANG Z, BOVIK A C, SHEIKH H R, et al Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13 (4): 600- 612
doi: 10.1109/TIP.2003.819861
|
28 |
HE T, ZHANG Z, ZHANG H, et al. Bag of tricks for image classification with convolutional neural networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 558–567.
|
29 |
KINGMA D P, BA J, HAMMAD M M. Adam: a method for stochastic optimization [EB/OL]. (2014−12−22)[2024−02−03]. https://arxiv.org/abs/1412.6980v9.
|
30 |
LI B, REN W, FU D, et al Benchmarking single image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2018, 1: 492- 505
|
31 |
MANNOS J, SAKRISON D The effects of a visual fidelity criterion of the encoding of images[J]. IEEE Transactions on Information Theory, 1974, 20 (4): 525- 536
doi: 10.1109/TIT.1974.1055250
|
32 |
ZHANG Y, DING L, SHARMA G. HazeRD: an outdoor scene dataset and benchmark for single image dehazing [C]// IEEE International Conference on Image Processing. Beijing: IEEE, 2017: 3205–3209.
|
33 |
CHEN D, HE M, FAN Q, et al. Gated context aggregation network for image dehazing and deraining [C]// IEEE Winter Conference on Applications of Computer Vision. Waikoloa Village: IEEE, 2019: 1375–1383.
|
34 |
ZHENG Z, REN W, CAO X, et al. Ultra-high-definition image dehazing via multi-guided bilateral learning [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 16180–16189.
|
35 |
BAI H, PAN J, XIANG X, et al Self-guided image dehazing using progressive feature fusion[J]. IEEE Transactions on Image Processing, 2022, 31: 1217- 1229
doi: 10.1109/TIP.2022.3140609
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|