计算机技术 |
|
|
|
|
基于注意力机制的视觉诱导晕动症评估模型 |
蔡永青( ),韩成*( ),权巍,陈兀迪 |
长春理工大学 计算机科学技术学院,吉林 长春 130022 |
|
Visual induced motion sickness estimation model based on attention mechanism |
Yongqing CAI( ),Cheng HAN*( ),Wei QUAN,Wudi CHEN |
School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China |
引用本文:
蔡永青,韩成,权巍,陈兀迪. 基于注意力机制的视觉诱导晕动症评估模型[J]. 浙江大学学报(工学版), 2025, 59(6): 1110-1118.
Yongqing CAI,Cheng HAN,Wei QUAN,Wudi CHEN. Visual induced motion sickness estimation model based on attention mechanism. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1110-1118.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.06.002
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I6/1110
|
1 |
SOUCHET A D, LOURDEAUX D, PAGANI A, et al A narrative review of immersive virtual reality’s ergonomics and risks at the workplace: cybersickness, visual fatigue, muscular fatigue, acute stress, and mental overload[J]. Virtual Reality, 2023, 27 (1): 19- 50
|
2 |
VON MAMMEN S, KNOTE A, EDENHOFER S. Cyber sick but still having fun [C]// Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology. Munich: ACM, 2016: 325–326.
|
3 |
SHEN Z, SUN F, WANG Y, et al Research progress in physiological evaluation and treatment of visually induced motion sickness in virtual reality[J]. Acta Academiae Medicinae Sinicae, 2023, 45 (6): 980- 986
|
4 |
NG A K T, CHAN L K Y, LAU H Y K A study of cyber-sickness and sensory conflict theory using a motion-coupled virtual reality system[J]. Displays, 2020, 61: 101922
|
5 |
KIM H G, LIM H T, LEE S, et al VRSA net: VR sickness assessment considering exceptional motion for 360° VR video[J]. IEEE Transactions on Image Processing, 2019, 28 (4): 1646- 1660
|
6 |
KENNEDY R S, LANE N E, BERBAUM K S, et al Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness[J]. The International Journal of Aviation Psychology, 1993, 3 (3): 203- 220
|
7 |
BRUCK S, WATTERS P A. Estimating cybersickness of simulated motion using the simulator sickness questionnaire (SSQ): a controlled study [C]// Proceedings of the International Conference on Computer Graphics. Tianjin: IEEE, 2009: 486–488.
|
8 |
ARAFAT I M, FERDOUS S M S, QUARLES J. The effects of cybersickness on persons with multiple sclerosis [C]// Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology. Munich: ACM, 2016: 51–59.
|
9 |
SEVINC V, BERKMAN M I Psychometric evaluation of simulator sickness questionnaire and its variants as a measure of cybersickness in consumer virtual environments[J]. Applied Ergonomics, 2020, 82: 102958
|
10 |
ISLAM R, DESAI K, QUARLES J. Towards forecasting the onset of cybersickness by fusing physiological, head-tracking and eye-tracking with multimodal deep fusion network [C]// Proceedings of the IEEE International Symposium on Mixed and Augmented Reality. Singapore: IEEE, 2022: 121–130.
|
11 |
SEONG S, PARK J Tracking motion sickness in dynamic VR environments with EDA signals[J]. International Journal of Industrial Ergonomics, 2024, 99: 103543
|
12 |
YANG A H X, KASABOV N K, CAKMAK Y O Prediction and detection of virtual reality induced cybersickness: a spiking neural network approach using spatiotemporal EEG brain data and heart rate variability[J]. Brain Informatics, 2023, 10 (1): 15
|
13 |
LI R, WANG Y, YIN H, et al. A deep cybersickness predictor through kinematic data with encoded physiological representation [C]// Proceedings of the IEEE International Symposium on Mixed and Augmented Reality. Sydney: IEEE, 2023: 1132–1141.
|
14 |
ISLAM R, DESAI K, QUARLES J. VR sickness prediction from integrated HMD’s sensors using multimodal deep fusion network [EB/OL]. (2021-08-14) [2024-10-22]. https://arxiv.org/abs/2108.06437.
|
15 |
SHIMADA S, PANNATTEE P, IKEI Y, et al High-frequency cybersickness prediction using deep learning techniques with eye-related indices[J]. IEEE Access, 2023, 11: 95825- 95839
|
16 |
YAO S H, FAN C L, HSU C H. Towards quality-of-experience models for watching 360° videos in head-mounted virtual reality [C]// Proceedings of the Eleventh International Conference on Quality of Multimedia Experience. Berlin: IEEE, 2019: 1–3.
|
17 |
QUAN W, LI L, HAN C, et al. Objective evaluation of VR sickness and analysis of its relationship with VR presence [C]// Proceedings of the International Conference on Intelligent Computing. Singapore: Springer, 2024: 416–427.
|
18 |
CAO Z, KOPPER R. Real-time viewport-aware optical flow estimation in 360-degree videos for visually-induced motion sickness mitigation [C]// Proceedings of the 25th Symposium on Virtual and Augmented Reality. Rio Grande: ACM, 2024: 210–218.
|
19 |
BALA P, DIONÍSIO D, NISI V, et al. Visually induced motion sickness in 360° videos: comparing and combining visual optimization techniques [C]// Proceedings of the IEEE International Symposium on Mixed and Augmented Reality Adjunct. Munich: IEEE, 2018: 244–249.
|
20 |
KIM J, KIM W, AHN S, et al. Virtual reality sickness predictor: analysis of visual-vestibular conflict and VR contents [C]// Proceedings of the Tenth International Conference on Quality of Multimedia Experience. Cagliari: IEEE, 2018: 1–6.
|
21 |
LEE J, KIM W, KIM J, et al. A study on virtual reality sickness and visual attention [C]// Proceedings of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. Tokyo: IEEE, 2021: 1465–1469.
|
22 |
ZHAO J, TRAN K T P, CHALMERS A, et al. Deep learning-based simulator sickness estimation from 3D motion [C]// Proceedings of the IEEE International Symposium on Mixed and Augmented Reality. Sydney: IEEE, 2023: 39–48.
|
23 |
LU Z, YU M, JIANG G, et al Prediction of motion sickness degree of stereoscopic panoramic videos based on content perception and binocular characteristics[J]. Digital Signal Processing, 2023, 132: 103787
|
24 |
LEE T M, YOON J C, LEE I K Motion sickness prediction in stereoscopic videos using 3D convolutional neural networks[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25 (5): 1919- 1927
|
25 |
DU M, CUI H, WANG Y, et al Learning from deep stereoscopic attention for simulator sickness prediction[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29 (2): 1415- 1423
|
26 |
权巍, 蔡永青, 王超, 等 基于3D-ResNet双流网络的VR病评估模型[J]. 浙江大学学报: 工学版, 2023, 57 (7): 1345- 1353 QUAN Wei, CAI Yongqing, WANG Chao, et al VR sickness estimation model based on 3D-ResNet two-stream network[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (7): 1345- 1353
|
27 |
ALEXEY D. An image is worth 16×16 words: Transformers for image recognition at scale [EB/OL]. (2021-06-03) [2024-10-22]. https://arxiv.org/abs/2010.11929.
|
28 |
FREMEREY S, SINGLA A, MESEBERG K, et al. AVtrack360: an open dataset and software recording people’s head rotations watching 360° videos on an HMD [C]// Proceedings of the 9th ACM Multimedia Systems Conference. Amsterdam: ACM, 2018: 403–408.
|
29 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. California: ACM, 2017: 6000–6010.
|
30 |
权巍, 王超, 耿雪娜, 等 基于运动感知的VR体验舒适度研究[J]. 系统仿真学报, 2023, 35 (1): 169- 177 QUAN Wei, WANG Chao, GENG Xuena, et al Research on VR experience comfort based on motion perception[J]. Journal of System Simulation, 2023, 35 (1): 169- 177
|
31 |
KUO P C, CHUANG L C, LIN D Y, et al. VR sickness assessment with perception prior and hybrid temporal features [C]// Proceedings of the 25th International Conference on Pattern Recognition. Milan: IEEE, 2021: 5558–5564.
|
32 |
PORCINO T, RODRIGUES E O, SILVA A, et al. Using the gameplay and user data to predict and identify causes of cybersickness manifestation in virtual reality games [C]// Proceedings of the IEEE 8th International Conference on Serious Games and Applications for Health. Vancouver: IEEE, 2020: 1–8.
|
33 |
YILDIRIM C. A review of deep learning approaches to EEG-based classification of cybersickness in virtual reality [C]// Proceedings of the IEEE International Conference on Artificial Intelligence and Virtual Reality. Utrecht: IEEE, 2020: 351–357.
|
34 |
LI Y, LIU A, DING L Machine learning assessment of visually induced motion sickness levels based on multiple biosignals[J]. Biomedical Signal Processing and Control, 2019, 49: 202- 211
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|