Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (5): 1051-1062    DOI: 10.3785/j.issn.1008-973X.2025.05.018
电气工程     
基于重组二次分解及LSTNet-Atten的短期负荷预测
刘洪伟1,2(),王磊2,*(),刘阳1,2,张鹏超2,乔石3
1. 陕西理工大学 电气工程学院,陕西 汉中 723001
2. 陕西理工大学 工业自动化重点实验室,陕西 汉中 723001
3. 国网山西省电力公司 晋中供电公司,山西 晋中 030600
Short term load forecasting based on recombination quadratic decomposition and LSTNet-Atten
Hongwei LIU1,2(),Lei WANG2,*(),Yang LIU1,2,Pengchao ZHANG2,Shi QIAO3
1. School of Electrical Engineering, Shanxi University of Technology, Hanzhong 723001, China
2. Key Laboratory of Industrial Automation, Shanxi University of Technology, Hanzhong 723001, China
3. Jinzhong Power Supply Company, State Grid Shanxi Electric Power Company, Jinzhong 030600, China
 全文: PDF(2539 KB)   HTML
摘要:

针对电力负荷数据随机性强、波动性大,预测精度较低的问题,提出基于重组二次分解及LSTNet-Atten的短期负荷预测方法. 在数据预处理阶段,采用自适应白噪声的完全集合经验模态分解对负荷序列进行初步分解,降低原始信号的随机性和波动性. 根据子序列的样本熵值,将相似的子序列重组聚合. 在特征工程阶段,采用变分模态分解对重组得到的复杂度较高的分量进行再次分解,通过皮尔逊、斯皮尔曼、最大信息系数方法评估输入影响因素与负荷数据之间的相关性,利用证据理论优化输入数据的特征维度. 在模型构建阶段,重构LSTNet-Atten预测模型,采用卷积模块挖掘序列的局部依赖关系,通过循环和循环跳过模块提取数据的长短期特征,提高数据本身的可预测性. 利用自回归模块增强神经网络对线性特征的识别能力,提高模型的预测性能. 增加时间注意力赋予重要特征更多的权重,实现全局与局部联系的捕获. 在瓦伦西亚区域级负荷数据集上的实验结果表明,与其他经典的深度学习模型相比,所提方法的序列预测误差最高降低了66.69%,拟合系数提高了5.04%,预测精度和鲁棒性更高.

关键词: 短期负荷预测二次分解样本熵LSTNet证据理论敏感特征因子筛选注意力机制    
Abstract:

A short-term load forecasting method based on restructured second modal decomposition and LSTNet-Atten was proposed in order to address the issues of high randomness and volatility in power load data, as well as the relatively low prediction accuracy. Complete ensemble empirical mode decomposition with adaptive white noise was employed for the preliminary decomposition of the load sequence during the data preprocessing phase. Then the randomness and volatility of the original signal was reduced. Similar subsequences were reorganized and aggregated based on their sample entropy values. Variational modal decomposition was applied to further decompose the components with higher complexity obtained from the reorganization in the feature engineering phase. The correlation between input influencing factors and load data was evaluated by using Pearson, Spearman, and maximum information coefficient methods, while evidence theory was utilized to optimize the feature dimensions of the input data. The LSTNet-Atten forecasting model was reconstructed in the model construction phase. Convolutional modules were used to mine local dependencies within sequences, while recurrent and skip recurrent modules extract both long-term and short-term features from the data to enhance its predictability. The autoregressive module was used to enhance the ability of the neural network to recognize linear features and improve the predictive performance of the model. More weight was given to important features by increasing temporal attention in order to achieve the capture of global and local connections. Experimental results on a Valencia regional load dataset indicate that the proposed method reduces sequence prediction error by up to 66.69% compared with other classical deep learning models with a 5.04% increase in fitting coefficient, demonstrating higher prediction accuracy and robustness.

Key words: short-term load prediction    quadratic decomposition    sample entropy    LSTNet    theory of evidence    screening of sensitive characteristics    attention mechanism
收稿日期: 2024-05-27 出版日期: 2025-04-25
CLC:  TM 715  
基金资助: 国家自然科学基金资助项目(62176146);国家社会科学基金西部项目(21XTY012);陕西理工大学研究生创新基金资助项目(SLGYCX2405).
通讯作者: 王磊     E-mail: 2496619314@qq.com;wanglei_sut@163.com
作者简介: 刘洪伟(1997—),男,硕士生,从事电力系统负荷预测的研究. orcid.org/0009-0007-5096-3293. E-mail:2496619314@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘洪伟
王磊
刘阳
张鹏超
乔石

引用本文:

刘洪伟,王磊,刘阳,张鹏超,乔石. 基于重组二次分解及LSTNet-Atten的短期负荷预测[J]. 浙江大学学报(工学版), 2025, 59(5): 1051-1062.

Hongwei LIU,Lei WANG,Yang LIU,Pengchao ZHANG,Shi QIAO. Short term load forecasting based on recombination quadratic decomposition and LSTNet-Atten. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 1051-1062.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.05.018        https://www.zjujournals.com/eng/CN/Y2025/V59/I5/1051

图 1  CEEMDAN 的分解过程
图 2  数据处理和特征提取的过程
图 3  LSTNet-Atten 结构
图 4  BiGRU结构的示意图
图 5  TPA 机制的结构
图 6  重组二次模态分解及DS-LSTNet-Atten的短期负荷预测框架
参数数值
输出通道100
卷积核高度7
输出通道64
时间窗口宽度7
跳过步数4
扩张系数1/2/4
窗口尺寸7
学习率0.001
Dropout率0.2
优化算法RAdam
表 1  LSTNet-Atten 模型的参数设定
图 7  负荷自相关系数图
图 8  4周的用电负荷数据
单位根检验方式H0假设Test statisticP临界值
1%5%10%
ADF单位根检验不能拒绝?10.67900.0000?3.4311?2.8619?2.5669
单位根检验方式H0假设Test statisticP临界值
1%5%10%
DF-GLS单位根检验不能拒绝?5.31900.0000?3.4100?2.8500?2.5600
单位根检验方式H0假设Test statisticP临界值
1%5%10%
KPSS单位根检验不能拒绝11.86310.07320.73900.46300.3470
表 2  ADF、DF-GLS和 KPSS 单位根检验
类别名称描述
气候温度每小时平均温度
湿度每小时平均湿度
风速每小时平均风速
风向每小时平均风向
气压每小时平均气压
降雨量每小时平均降雨量
日期季节春夏秋冬:1、2、3、4
月度1 月—12 月:1~12
节假日工作日:1;节假日:0
周一—周日:1~7
小时0时—23时:1~24
其他电价每小时平均电价
云层指标每小时平均云层厚度
表 3  影响负荷数据的特征
图 9  D-S特征筛选的结果
图 10  瓦伦西亚负荷曲线
特征筛选方法${\hat R^{\text{2}}}$MAPE/%MAE/MWRMSE/MW
D-S优化组合-
异常值处理
0.99061.2097373.7098433.3744
D-S优化组合0.97361.2775405.8748513.1733
皮尔逊相关系数0.97451.3759423.2626504.6831
斯皮尔曼相关系数0.97041.4085427.3745542.7894
最大信息系数0.97491.3591420.7723502.0692
未处理特征0.93442.1423693.5612800.8953
表 4  不同特征筛选方法的结果对比
图 11  CEEMDAN分解结果
分量$\hat S $分量$\hat S $
CIMF11.7580CIMF60.0853
CIMF21.7442CIMF70.0459
CIMF31.4596CIMF80.0162
CIMF40.5481CIMF90.0071
CIMF50.2717CIMF100.0008
表 5  各分量的样本熵
K${\omega _1}$${\omega _2}$${\omega _3}$${\omega _4}$${\omega _5}$${\omega _6}$${\omega _7}$
30.01140.02320.0452
40.01140.02310.04610.0541
50.01140.02320.04620.05520.0832
60.01140.02320.04600.05900.08120.1032
70.01140.02310.03400.04560.05860.05880.0821
表 6  不同分解模态数对应的分量中心频率
预测方法R2MAPE/%MAE/MWRMSE/MW
本文模型0.99410.9352288.2614344.4416
LSTM0.98381.5642483.6712568.3106
GRU0.98541.4336441.3944532.6556
CNN0.97191.9207593.0051748.6296
TCN0.97241.8871582.6696742.0751
BPNN0.98311.6226500.4080579.9943
XGBoost0.97471.8339566.6258710.1997
SVM0.94642.7265829.40631034.1775
表 7  提出模型与单一模型的预测结果对比
预测方法R2MAPE/%MAE/MWRMSE/MW
本文模型0.99410.9352288.2614344.4416
LSTGru-Atten0.99231.0706329.5825389.6542
LSTNet-Attention0.99101.1043343.4469410.2345
CNN-LSTM0.98881.3307409.6971472.1109
CNN-GRU0.98921.2605385.6182465.2339
TCN-LSTM0.98921.2345379.9722462.5232
TCN-GRU0.99001.1714362.9603447.8847
表 8  提出模型与混合模型的预测结果对比
季节tpLSTMGRUCNN-LSTM本文模型
MAPE/%RMSE/MWMAPE/%RMSE/MWMAPE/%RMSE/MWMAPE/%RMSE/MW
春季31.8732647.85191.5256504.53281.7768618.22751.1130375.1620
春季62.6604842.18772.3041729.01852.1072696.21721.5066466.8072
春季123.1097978.81462.7551862.48312.4585783.82692.3577761.4055
夏季31.7202640.54281.7152584.58691.2806467.52841.1282401.3416
夏季62.0752776.52171.8062648.34801.9220699.10921.5260540.9594
夏季122.92531076.05072.2146849.37152.4865861.74211.91401086.1290
秋季32.77081017.86792.4773948.03722.4117977.81081.5094559.3695
秋季63.14401266.91242.83871091.78962.86521097.95741.8423710.4821
秋季123.80811381.74404.58261611.78713.77331399.80272.91591061.1052
冬季32.8918892.67682.4245837.65852.6789859.98351.2748414.5248
冬季63.00451000.14132.8462927.80102.8310913.74171.6032537.4815
冬季123.16861016.14633.94791241.77993.97681217.90632.3122738.8276
表 9  不同季节的性能比较
预测模型R2MAPE/%MAE/MWRMSE/MW
不分解0.989 51.204 9371.268 9456.948 1
EMD分解0.982 71.388 1440.149 2586.933 6
EEMD分解0.990 11.187 5368.648 7443.853 4
CEEMDAN分解0.990 21.150 3356.471 4439.469 8
CEEMDAN+SE分解0.990 81.114 9347.066 7426.516 9
本文方法0.994 10.935 2288.261 4344.441 6
表 10  提出模型与其他分解方法的预测结果对比
预测模型R2MAPE/%MAE/MWRMSE/MW
Origin0.994 10.935 2288.261 4344.441 6
De-CNN0.991 71.063 3312.362 2395.231 4
De-Skip0.990 11.194 4371.136 5445.511 2
De-Attn0.990 41.165 8351.236 4433.875 2
De-AR0.984 51.360 1426.362 3553.012 2
表 11  消融研究的误差对比
1 乔石, 王磊, 张鹏超, 等 基于模态分解及注意力机制长短时间网络的短期负荷预测[J]. 电网技术, 2022, 46 (10): 3940- 3951
QIAO Shi, WANG Lei, ZHANG Pengchao, et al Short-term load forecasting by long-and short-term temporal networks with attention based on modal decomposition[J]. Power System Technology, 2022, 46 (10): 3940- 3951
2 HU Y, LI J, HONG M, et al Industrial artificial intelligence based energy management system: Integrated framework for electricity load forecasting and fault prediction[J]. Energy, 2022, 244 (4): 123195
3 韩富佳, 王晓辉, 乔骥, 等 基于人工智能技术的新型电力系统负荷预测研究综述[J]. 中国电机工程学报, 2023, 43 (22): 8569- 8592
HAN Fujia, WANG Xiaohui, QIAO Ji, et al Review on artificial intelligence based load forecasting research for the new-type power system[J]. Proceedings of the CSEE, 2023, 43 (22): 8569- 8592
4 BO H, JIAN X, ZUO X X, et al Short-term combined forecasting method of park load based on CEEMD-MLR-LSSVR-SBO[J]. Energies, 2022, 15 (8): 2767
doi: 10.3390/en15082767
5 DUDEK G, PELKA P, SMYL S A hybrid residual dilated LSTM and exponential smoothing model for midterm electric load forecasting[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33 (7): 2879- 2891
6 FAN G F, ZHANG L Z, YU M, et al Applications of random forest in multivariable response surface for short-term load forecasting[J]. International Journal of Electrical Power and Energy Systems, 2022, 139 (7): 108073- 108079
7 ALVAREZ V, MAZUELAS S, LOZANO J A, et al Probabilistic load forecasting based on adaptive online learning[J]. IEEE Transactions on Power Systems, 2021, 36 (4): 3668- 3680
doi: 10.1109/TPWRS.2021.3050837
8 ALRASHIDI A, QAMAR M A Data-driven load forecasting using machine learning and meteorological data[J]. Computer Systems Science and Engineering, 2023, 44 (3): 1973- 1988
doi: 10.32604/csse.2023.024633
9 TANG X, DAI Y, LIU Q, et al Application of bidirectional recurrent neural network combined with deep belief network in short-term load forecasting[J]. IEEE Access, 2019, 7 (1): 160660- 160670
10 陆继翔, 张琪培, 杨志宏, 等 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43 (8): 131- 137
LU Jixiang, ZHANG Qipei, YANG Zhihong, et al Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43 (8): 131- 137
11 黄炜, 陈田, 吴入军 基于门控循环单元与误差修正的短期负荷预测[J]. 浙江大学学报: 工学版, 2021, 55 (9): 1625- 1633
HUANG Wei, CHEN Tian, WU Rujun Short-term load forecasting based on gated cycle unit with error correction[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (9): 1625- 1633
12 李文武, 张鹏宇, 石强, 等 基于聚合混合模态分解和时序卷积神经网络的综合能源系统负荷修正预测[J]. 电网技术, 2022, 46 (9): 3345- 3357
LI Wenwu, ZHANG Pengyu, SHI Qiang, et al Correction prediction of integrated energy system load based on aggregated mixed mode decomposition and TCN[J]. Power System Technology, 2022, 46 (9): 3345- 3357
13 MOHAN N, SOMAN K P, KUMAR S S A data-driven strategy for short-term electric load forecasting using dynamic mode decomposition model[J]. Applied Energy, 2018, 232 (12): 229- 244
14 臧海祥, 陈玉伟, 程礼临, 等 基于多尺度分量特征学习的用户级超短期负荷预测[J]. 电网技术, 2024, 48 (6): 2584- 2592
ZANG Haixiang, CHEN Yuwei, CHENG Lilin, et al User-level ultra-short-term load forecasting based on multi-scale component feature learning[J]. Power System Technology, 2024, 48 (6): 2584- 2592
15 常雨芳, 杨子潇, 潘风, 等 基于CEEMDAN-PE-WPD和多目标优化的超短期风电功率预测方法[J]. 电网技术, 2023, 47 (12): 5015- 5026
CHANG Yufang, YANG Zixiao, PAN Feng, et al Ultra-short-term wind power prediction method based on CEEMDAN-PE-WPD and multi-objective optimization[J]. Power System Technology, 2023, 47 (12): 5015- 5026
16 陈锦鹏, 胡志坚, 陈纬楠, 等 二次模态分解组合DBiLSTM-MLR的综合能源系统负荷预测[J]. 电力系统自动化, 2021, 45 (13): 85- 94
CHEN Jinpeng, HU Zhijian, CHEN Weinan, et al Integrated energy system load forecasting by combined DBiLSTM-MLR with quadratic modal decomposition[J]. Power System Automation, 2021, 45 (13): 85- 94
17 XU Weifeng, LIU Pan, CHENG Lei, et al Multi-step wind speed prediction by combining a WRF simulation and an error correction strategy[J]. Renewable Energy, 2021, 163 (1): 772- 782
18 张明辉, 周亚同, 孔晓然 基于深度混合储备池计算模型的短期电力负荷预测[J]. 电网技术, 2022, 46 (12): 4751- 4762
ZHANG Minghui, ZHOU Yatong, KONG Xiaoran Short-term electrical load prediction based on deep hybrid reservoir calculation model[J]. Power System Technology, 2022, 46 (12): 4751- 4762
19 吉兴全, 赵国航, 叶平峰, 等 基于QMD-HBiGRU的短期光伏功率预测方法[J]. 高电压技术, 2024, 50 (9): 3850- 3859
JI Xingquan, ZHAO Guohang, YE Pingfeng, et al Short-term PV power prediction method based on QMD-HBiGRU[J]. High Voltage Technology, 2024, 50 (9): 3850- 3859
20 张淑清, 李君, 姜安琦, 等 基于FPA-VMD和BiLSTM神经网络的新型两阶段短期电力负荷预测[J]. 电网技术, 2022, 46 (8): 3269- 3279
ZHANG Shuqing, LI Jun, JIANG Anqi, et al A novel two-stage model based on FPA-VMD and BiLSTM neural network for short-term power load forecasting[J]. Power System Technology, 2022, 46 (8): 3269- 3279
21 YU F, WANG L, JIANG Q Y, et al Self-attention-based short-term load forecasting considering demand-side management[J]. Energies, 2022, 15 (12): 4198- 4216
doi: 10.3390/en15124198
[1] 李宗民,徐畅,白云,鲜世洋,戎光彩. 面向点云理解的双邻域图卷积方法[J]. 浙江大学学报(工学版), 2025, 59(5): 879-889.
[2] 刘登峰,郭文静,陈世海. 基于内容引导注意力的车道线检测网络[J]. 浙江大学学报(工学版), 2025, 59(3): 451-459.
[3] 姚明辉,王悦燕,吴启亮,牛燕,王聪. 基于小样本人体运动行为识别的孪生网络算法[J]. 浙江大学学报(工学版), 2025, 59(3): 504-511.
[4] 尹向雷,屈少鹏,解永芳,苏妮. 基于渐进特征融合及多尺度空洞注意力的遮挡鸟巢检测[J]. 浙江大学学报(工学版), 2025, 59(3): 535-545.
[5] 薛雅丽,贺怡铭,崔闪,欧阳权. 基于改进YOLOv5的SAR图像有向舰船目标检测算法[J]. 浙江大学学报(工学版), 2025, 59(2): 261-268.
[6] 杨冰,徐楚阳,姚金良,向学勤. 基于单目RGB图像的三维手部姿态估计方法[J]. 浙江大学学报(工学版), 2025, 59(1): 18-26.
[7] 李灿林,王新玥,马利庄,邵志文,张文娇. 融合注意力机制和结构线提取的图像卡通化[J]. 浙江大学学报(工学版), 2024, 58(8): 1728-1737.
[8] 李忠良,陈麒,石琳,杨朝,邹先明. 时间感知组合的动态知识图谱补全[J]. 浙江大学学报(工学版), 2024, 58(8): 1738-1747.
[9] 吴书晗,王丹,陈远方,贾子钰,张越棋,许萌. 融合注意力的滤波器组双视图图卷积运动想象脑电分类[J]. 浙江大学学报(工学版), 2024, 58(7): 1326-1335.
[10] 马现伟,范朝辉,聂为之,李东,朱逸群. 对失效传感器具备鲁棒性的故障诊断方法[J]. 浙江大学学报(工学版), 2024, 58(7): 1488-1497.
[11] 杨军,张琛. 基于边界点估计与稀疏卷积神经网络的三维点云语义分割[J]. 浙江大学学报(工学版), 2024, 58(6): 1121-1132.
[12] 李运堂,李恒杰,张坤,王斌锐,关山越,陈源. 基于新型编码解码网络的复杂输电线识别[J]. 浙江大学学报(工学版), 2024, 58(6): 1133-1141.
[13] 魏翠婷,赵唯坚,孙博超,刘芸怡. 基于改进Mask R-CNN与双目视觉的智能配筋检测[J]. 浙江大学学报(工学版), 2024, 58(5): 1009-1019.
[14] 刘毅,陈一丹,高琳,洪姣. 基于多尺度特征融合的轻量化道路提取模型[J]. 浙江大学学报(工学版), 2024, 58(5): 951-959.
[15] 邢志伟,朱书杰,李彪. 基于改进图卷积神经网络的航空行李特征感知[J]. 浙江大学学报(工学版), 2024, 58(5): 941-950.