计算机技术、信息工程 |
|
|
|
|
结合全局信息和局部信息的三维网格分割框架 |
张梦瑶( ),周杰,李文婷,赵勇*( ) |
中国海洋大学 数学科学学院,山东 青岛 266100 |
|
Three-dimensional mesh segmentation framework using global and local information |
Mengyao ZHANG( ),Jie ZHOU,Wenting LI,Yong ZHAO*( ) |
School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China |
引用本文:
张梦瑶,周杰,李文婷,赵勇. 结合全局信息和局部信息的三维网格分割框架[J]. 浙江大学学报(工学版), 2025, 59(5): 912-919.
Mengyao ZHANG,Jie ZHOU,Wenting LI,Yong ZHAO. Three-dimensional mesh segmentation framework using global and local information. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 912-919.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.05.004
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I5/912
|
1 |
KALOGERAKIS E, HERTZMANN A, SINGH K Learning 3D mesh segmentation and labeling[J]. ACM Transactions on Graphics, 2010, 29 (4): 102
|
2 |
BENHABILES H, LAVOUÉ G, VANDEBORRE J, et al Learning boundary edges for 3D-mesh segmentation[J]. Computer Graphics Forum, 2011, 30 (8): 2170- 2182
doi: 10.1111/j.1467-8659.2011.01967.x
|
3 |
HU R, FAN L, LIU L Co-segmentation of 3D shapes via subspace clustering[J]. Computer Graphics Forum, 2012, 31 (5): 1703- 1713
doi: 10.1111/j.1467-8659.2012.03175.x
|
4 |
WANG Y, GONG M, WANG T, et al Projective analysis for 3D shape segmentation[J]. ACM Transactions on Graphics, 2013, 32 (6): 192
|
5 |
GUO K, ZOU D, CHEN X 3D mesh labeling via deep convolutional neural networks[J]. ACM Transactions on Graphics, 2015, 35 (1): 3
|
6 |
GEORGE D, XIE X, TAM G K 3D mesh segmentation via multi-branch 1D convolutional neural networks[J]. Graphical Models, 2018, 96: 1- 10
doi: 10.1016/j.gmod.2018.01.001
|
7 |
XIE Z, XU K, SHAN W, et al Projective feature learning for 3D shapes with multi-view depth images[J]. Computer Graphics Forum, 2015, 34 (7): 1- 11
doi: 10.1111/cgf.12740
|
8 |
KALOGERAKIS E, AVERKIOU M, MAJI S, et al. 3D shape segmentation with projective convolutional networks [C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 6630-6639.
|
9 |
KUNDU A, YIN X, FATHI A, et al. Virtual multi-view fusion for 3D semantic segmentation [C]// Proceedings of the European Conference on Computer Vision . Glasgow: Springer, 2020: 518-535.
|
10 |
WANG P, LIU Y, GUO Y, et al O-CNN: octree-based convolutional neural networks for 3D shape analysis[J]. ACM Transactions on Graphics, 2017, 36 (4): 72
|
11 |
WANG Z, LU F VoxSegNet: volumetric CNNs for semantic part segmentation of 3D shapes[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26 (9): 2919- 2930
doi: 10.1109/TVCG.2019.2896310
|
12 |
HU Z, BAI X, SHANG J, et al. VMNet: voxel-mesh network for geodesic-aware 3D semantic segmentation [C]// Proceedings of the IEEE International Conference on Computer Vision . Venice: IEEE, 2021: 15468-15478.
|
13 |
XU H, DONG M, ZHONG Z. Directionally convolutional networks for 3D shape segmentation [C]// Proceedings of the IEEE International Conference on Computer Vision . Venice: IEEE, 2017: 2717-2726.
|
14 |
HUANG J, ZHANG H, YI L, et al. TextureNet: consistent local parametrizations for learning from high-resolution signals on meshes [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Long Beach: IEEE, 2019: 4440-4449.
|
15 |
FENG Y, FENG Y, YOU H, et al. MeshNet: mesh neural network for 3D shape representation [C]// Proceedings of the AAAI Conference on Artificial Intelligence . Palo Alto: AAAI Press, 2019: 8279-8286.
|
16 |
HANOCKA R, HERTZ A, FISH N, et al MeshCNN: a network with edge[J]. ACM Transactions on Graphics, 2019, 38 (4): 90
|
17 |
HU S, LIU Z, GUO M, et al Subdivision-based mesh convolution networks[J]. ACM Transactions on Graphics, 2022, 41 (3): 25
|
18 |
PÉREZ D, SHEN Y, LI J Mesh convolutional networks with face and vertex feature operators[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29 (3): 1678- 1690
doi: 10.1109/TVCG.2021.3129156
|
19 |
LAHAV A, TAL A MeshWalker: deep mesh understanding by random walks[J]. ACM Transactions on Graphics, 2020, 39 (6): 263
|
20 |
SHARP N, ATTAIKI S, CRANE K, et al DiffusionNet: discretization agnostic learning on surfaces[J]. ACM Transactions on Graphics, 2022, 41 (3): 27
|
21 |
QIAO Y, GAO L, YANG J, et al Learning on 3D meshes with Laplacian encoding and pooling[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 28 (2): 1317- 1327
doi: 10.1109/TVCG.2020.3014449
|
22 |
DONG Q, WANG Z, LI M, et al Laplacian2Mesh: Laplacian-based mesh understanding[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 30 (7): 4349- 4361
|
23 |
WONG C. Heat diffusion based multi-scale and geometric structure-aware transformer for mesh segmentation [C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition . Vancouver: IEEE, 2023: 4413-4422.
|
24 |
YI L, SU H, GUO X, et al. SyncSpecCNN: synchronized spectral CNN for 3D shape segmentation [C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 6584-6592.
|
25 |
SCHULT J, ENGELMANN F, KONTOGIANNI T, et al. DualConvMesh-net: joint geodesic and Euclidean convolutions on 3D meshes [C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 8609-8619.
|
26 |
LI X, YANG J, ZHANG F. Laplacian mesh transformer: dual attention and topology aware network for 3D mesh classification and segmentation [C]// Proceedings of the European Conference on Computer Vision . Tel Aviv: Springer, 2022: 541-560.
|
27 |
ROY B. Neural shape diameter function for efficient mesh segmentation [C]// Proceedings of ACM SIGGRAPH Annual Conference Posters . Los Angeles: ACM, 2023.
|
28 |
XU X, LIU C, ZHENG Y 3D tooth segmentation and labeling using deep convolutional neural networks[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25 (7): 2336- 2348
doi: 10.1109/TVCG.2018.2839685
|
29 |
LI Y, HE X, JIANG Y, et al MeshFormer: high-resolution mesh segmentation with graph transformer[J]. Computer Graphics Forum, 2022, 41 (7): 38- 49
|
30 |
LV J, CHEN X, HUANG J, et al Semi-supervised mesh segmentation and labeling[J]. Computer Graphics Forum, 2012, 31 (7): 2241- 2248
doi: 10.1111/j.1467-8659.2012.03217.x
|
31 |
SHU Z, SHEN X, XIN S, et al Scribble-based 3D shape segmentation via weakly-supervised learning[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26 (8): 2671- 2682
doi: 10.1109/TVCG.2019.2892076
|
32 |
SHU Z, YANG S, WU H, et al 3D shape segmentation using soft density peak clustering and semi-supervised learning[J]. Computer-Aided Design, 2022, 145: 103181
doi: 10.1016/j.cad.2021.103181
|
33 |
SHU Z, QI C, XIN S, et al Unsupervised 3D shape segmentation and co-segmentation via deep learning[J]. Computer-Aided Geometric Design, 2016, 43: 39- 52
doi: 10.1016/j.cagd.2016.02.015
|
34 |
LIANG Y, ZHAO S, YU B, et al. MeshMAE: masked autoencoders for 3D mesh data analysis [C]// Proceedings of the European Conference on Computer Vision . Tel Aviv: Springer, 2022: 37-54.
|
35 |
JIAO X, CHEN Y, YANG X SCMS-Net: self-supervised clustering-based 3D meshes segmentation network[J]. Computer-Aided Design, 2023, 160: 103512
doi: 10.1016/j.cad.2023.103512
|
36 |
LOUKAS A Graph reduction with spectral and cut guarantees[J]. Journal of Machine Learning Research, 2019, 20 (116): 1- 42
|
37 |
ZHANG Z, LIU Q, HU Q, et al. Hierarchical graph transformer with adaptive node sampling [C]// Proceedings of the Conference on Neural Information Proceeding Systems . New Orleans: MIT Press, 2022, 35: 21171-21183.
|
38 |
WU L, HOU Y, XU J, et al Robust mesh segmentation using feature-aware region fusion[J]. Sensor, 2023, 23 (1): 416
|
39 |
SHAPIRA L, SHAMIR A, COHEN-OR D Consistent mesh partitioning and skeletonisation using the shape diameter function[J]. The Visual Computer, 2008, 24 (4): 249- 259
doi: 10.1007/s00371-007-0197-5
|
40 |
BEN-CHEN M, GOTSMAN C. Characterizing shape using conformal factors [C]// Proceedings of the Eurographics Conference on 3D Object Retrieval . Crete: Springer, 2008: 1-8.
|
41 |
SUN J, OVSJANIKOV M, GUIBAS L A concise and provably informative multi-scale signature based on heat diffusion[J]. Computer Graphics Forum, 2009, 28 (5): 1383- 1392
doi: 10.1111/j.1467-8659.2009.01515.x
|
42 |
CHEN X, GOLOVINSKIY A, FUNKHOUSER T A benchmark for 3D mesh segmentation[J]. ACM Transactions on Graphics, 2009, 28 (3): 73
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|