计算机与控制工程 |
|
|
|
|
基于并行计算的计算智能综述 |
吴菲( ),陈嘉诚,王万良*( ) |
浙江工业大学 计算机科学与技术学院,浙江 杭州 310023 |
|
Review on computational intelligence based on parallel computing |
Fei WU( ),Jiacheng CHEN,Wanliang WANG*( ) |
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China |
1 |
陈永忠, 陈顺怀 计算智能技术综述[J]. 航海科技动态, 2000, (6): 1- 3 CHEN Yongzhong, CHEN Shunhuai Review of computational intelligence technologies[J]. Marine Technical News and Trends, 2000, (6): 1- 3
|
2 |
王万良, 金雅文, 陈嘉诚, 等 多角色多策略多目标粒子群优化算法[J]. 浙江大学学报: 工学版, 2022, 56 (3): 531- 541 WANG Wanliang, JIN Yawen, CHEN Jiacheng, et al Multi-objective particle swarm optimization algorithm with multi-role and multi-strategy[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (3): 531- 541
|
3 |
王万良, 张兆娟, 高楠, 等 基于人工智能技术的大数据分析方法研究进展[J]. 计算机集成制造系统, 2019, 25 (3): 529- 547 WANG Wanliang, ZHANG Zhaojuan, GAO Nan, et al Progress of big data analysis methods based on artificial intelligence technology[J]. Computer Integrated Manufacturing Systems, 2019, 25 (3): 529- 547
|
4 |
郭平, 王可, 罗阿理, 等. 大数据分析中的计算智能研究现状与展望[J]. 软件学报, 2015, 26(11): 3010–3025. GUO Ping, WANG Ke, LUO Ali, et al. Computational intelligence for big data analysis: current status and future prospect [J] Journal of Software , 2015, 26(11): 3010–3025.
|
5 |
刘广轩, 黄山, 胡佳丽, 等 面向 Flink 流处理框架的主动备份容错优化[J]. 浙江大学学报: 工学版, 2022, 56 (2): 297- 305 LIU Guangxuan, HUANG Shan, HU Jiali, et al Fault tolerant optimization of active backup for flink stream processing framework[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (2): 297- 305
|
6 |
YANG C T, KRISTIANI E, LEONG Y K, et al Big data and machine learning driven bioprocessing: recent trends and critical analysis[J]. Bioresource Technology, 2023, 372: 128625
doi: 10.1016/j.biortech.2023.128625
|
7 |
RAMESH A V, LI X. Feasibility layer aided machine learning approach for day-ahead operations [J]. IEEE Transactions on Power Systems , 2024, 39(1): 1582–1593.
|
8 |
YANG Y, ZHAN D C, FAN Y, et al. Deep learning for fixed model reuse [C]// Thirty-First AAAI Conference on Artificial Intelligence . [S.l.]: AAAI, 2017, 31(1): 2831–2837.
|
9 |
DHAR T, DEY N, BORRA S, et al Challenges of deep learning in medical image analysis: improving explainability and trust[J]. IEEE Transactions on Technology and Society, 2023, 4 (1): 68- 75
doi: 10.1109/TTS.2023.3234203
|
10 |
BHATTI U A, TANG H, WU G, et al Deep learning with graph convolutional networks: an overview and latest applications in computational intelligence[J]. International Journal of Intelligent Systems, 2023, 2023: 1- 28
|
11 |
XIAO A, HUANG J, GUAN D, et al Unsupervised point cloud representation learning with deep neural networks: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (9): 11321- 11339
doi: 10.1109/TPAMI.2023.3262786
|
12 |
DONG Y, LIU Q, DU B, et al Weighted feature fusion of convolutional neural network and graph attention network for hyperspectral image classification[J]. IEEE Transactions on Image Processing, 2022, 31: 1559- 1572
doi: 10.1109/TIP.2022.3144017
|
13 |
CRUZ L, TOUS R, OTERO B Distributed training of deep neural networks with Spark: the MareNostrum experience[J]. Pattern Recognition Letters, 2019, 125 (7): 174- 178
|
14 |
KLEIN B, ZENTENO A C, JOSEPH D, et al Forecasting hospital-level COVID-19 admissions using real-time mobility data[J]. Communications Medicine, 2023, 3 (1): 25
doi: 10.1038/s43856-023-00253-5
|
15 |
DEAN J, CORRADO G S, MONGA R, et al. Large scale distributed deep networks [C]// Proceedings of the 25th International Conference on Neural Information Processing Systems . [S.l.]: Curran Associates Incorporated, 2012: 1223–1231.
|
16 |
CHALLU C, OLIVARES K G, ORESHKIN B N, et al. NHITS: neural hierarchical interpolation for time series forecasting [C]/ / Proceedings of the 37th AAAI Conference on Artificial Intelligence . [S.l.]: AAAI, 2023: 6989–6997.
|
17 |
WANG X, LI S, PUN C M, et al A parkinson’s auxiliary diagnosis algorithm based on a hyperparameter optimization method of deep learning[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2024, 21 (4): 912- 923
doi: 10.1109/TCBB.2023.3246961
|
18 |
GIBSON A, NICHOLSON C, PATTERSON J, et al. DeepLearnning4J [EB/OL]. (2019–06–10)[2023–12–09]. https://github.com/deeplearning4j/deeplearning4j.
|
19 |
MALOHLAVA M, HAVA J, MEHTA N. Machine learning with sparkling water: H2O+Spark [EB/OL]. [2023–12–09]. https://h2o.ai/resources/booklet/machine-learning-with-sparkling-water-H2O-Spark.
|
20 |
JIA Y, SHELHAMER E, DONAHUE J, et al. Caffe: convolutional architecture for fast feature embedding [C]// Proceedings of the 22nd ACM International Conference on Multimedia . [S.l.]: ACM, 2014: 675–678.
|
21 |
GLAUNER P, STATE R. Deep learning on big data sets in the cloud with Apache Spark and Google TensorFlow [EB/OL]. (2016–12–06)[2023–12–09]. https://orbilu.uni.lu/bitstream/10993/28807/1/Deep%20Learning%20on%20Big%20Data%20Sets%20in%20the%20Cloud%20with%20Apache%20Spark%20and%20Google%20TensorFlow.pdf.
|
22 |
HE H, ZHAI H, LIU Q, et al. Using object-oriented big data analytics to reveal server performance dead zone [C]// 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC) . Atlanta: IEEE, 2016: 619–624.
|
23 |
KIM H, PARK J, JANG J, et al. DeepSpark: Spark-based deep learning supporting asynchronous updates and Caffe compatibility [EB/OL]. (2016–10–01)[2023–12–09]. https://arxiv.org/pdf/1602.08191v1.
|
24 |
NEUMANN D. DeepDist [EB/OL]. (2016–10–05)[2023–12–09]. http://deepdist.com//.
|
25 |
WANG J, CHENG L. DistDL: a distributed deep learning service schema with GPU accelerating [C]// Web Technologies and Applications . [S.l.]: Springer, 2015: 793–804.
|
26 |
MENG X, BRADLEY J, YAVUZ B, et al MLlib: machine learning in Apache Spark[J]. The Journal of Machine Learning Research, 2016, 17 (1): 1235- 1241
|
27 |
MIAO Q, LV Y, HUANG M, et al Parallel learning: overview and perspective for computational learning across Syn2Real and Sim2Real[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10 (3): 603- 631
doi: 10.1109/JAS.2023.123375
|
28 |
XIAO S, HUANG S, LIN Y, et al. Let the chart spark: Embedding semantic context into chart with text-to-image generative model [J]. IEEE Transactions on Visualization and Computer Graphics , 2024, 30(1): 284–294.
|
29 |
ULLAH F, SRIVASTAVA G, ULLAH S, et al NIDS-VSB: network intrusion detection system for VANET using Spark-based big data optimization and transfer learning[J]. IEEE Transactions on Consumer Electronics, 2024, 70 (1): 1798- 1809
doi: 10.1109/TCE.2023.3328320
|
30 |
TEERAPITTAYANON S, MCDANEL B, KUNG H T. Distributed deep neural networks over the cloud, the edge and end devices [C] // 2017 IEEE 37th International Conference on Distributed Computing Systems . Atlanta: IEEE, 2017: 328–339
|
31 |
TAKAM C A, SAMBA O, KOUANOU A T, et al Spark architecture for deep learning-based dose optimization in medical imaging[J]. Informatics in Medicine Unlocked, 2020, 19: 100335
doi: 10.1016/j.imu.2020.100335
|
32 |
WBA B, MS A, MDA B, et al RS-DCNN: a novel distributed convolutional-neural-networks based-approach for big remote-sensing image classification[J]. Computers and Electronics in Agriculture, 2021, 182: 106014
doi: 10.1016/j.compag.2021.106014
|
33 |
JANG G, LEE J W, LEE J G, et al Distributed fine-tuning of CNNs for image retrieval on multiple mobile devices[J]. Pervasive and Mobile Computing, 2020, 64: 101134
doi: 10.1016/j.pmcj.2020.101134
|
34 |
CAO W, ZHANG C An effective parallel integrated neural network system for industrial data prediction[J]. Applied Soft Computing, 2021, 107: 107397
doi: 10.1016/j.asoc.2021.107397
|
35 |
VENKATESAN N J, DONG R S, NAM C S Nodule detection with convolutional neural network using Apache Spark and GPU frameworks[J]. Applied Sciences, 2021, 11 (6): 2838
doi: 10.3390/app11062838
|
36 |
YANG F, WANG H, FU J Improvement of recommendation algorithm based on collaborative deep learning and its parallelization on Spark[J]. Journal of Parallel and Distributed Computing, 2021, 148 (2): 58- 68
|
37 |
MARIR N, WANG H, FENG G, et al Distributed abnormal behavior detection approach based on deep belief network and ensemble SVM using Spark[J]. IEEE Access, 2018, 6: 59657- 59671
|
38 |
YIN C, PAN C, ZHANG P. Deep neural network combined with MapReduce for abnormal data mining and detection in cloud storage [J]. Journal of Ambient Intelligence and Humanized Computing , 2020: 1–12.
|
39 |
XU J, WANG J, QI Q, et al Effective scheduler for distributed DNN training based on MapReduce and GPU cluster[J]. Journal of Grid Computing, 2021, 19: 8
doi: 10.1007/s10723-021-09550-6
|
40 |
ZHU M, GUAN X, LI Z, et al sEMG-based lower limb motion prediction using CNN-LSTM with improved PCA optimization algorithm[J]. Journal of Bionic Engineering, 2023, 20: 612- 627
doi: 10.1007/s42235-022-00280-3
|
41 |
HU X, LI S, HUANG T, et al How simulation helps autonomous driving: a survey of sim2real, digital twins, and parallel intelligence[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9 (1): 593- 612
doi: 10.1109/TIV.2023.3312777
|
42 |
LV Z, CHEN D, CAO B, et al Secure deep learning in defense in deep-learning-as-a-service computing systems in digital twins[J]. IEEE Transactions on Computers, 2024, 73 (3): 656- 668
doi: 10.1109/TC.2021.3077687
|
43 |
WANG Z, LV C, WANG F Y A new era of intelligent vehicles and intelligent transportation systems: digital twins and parallel intelligence[J]. IEEE Transactions on Intelligent Vehicles, 2023, 4 (8): 2619- 2627
|
44 |
ZHU Z, LIN K, JAIN A K, et al Transfer learning in deep reinforcement learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 11 (45): 13344- 13362
|
45 |
CHEN X, YANG R, XUE Y, et al Deep transfer learning for bearing fault diagnosis: a systematic review since 2016[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3508221
|
46 |
CHEN H, LUO H, HUANG B, et al Transfer learning-motivated intelligent fault diagnosis designs: a survey, insights, and perspectives[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 35 (3): 2969- 2983
|
47 |
PANDYA S, SRIVASTAVA G, JHAVERI R, et al Federated learning for smart cities: a comprehensive survey[J]. Sustainable Energy Technologies and Assessments, 2023, 55: 102987
doi: 10.1016/j.seta.2022.102987
|
48 |
MYRZASHOVA R, ALSAMHI S H, SHVETSOV A V, et al Blockchain meets federated learning in healthcare: a systematic review with challenges and opportunities[J]. IEEE Internet of Things Journal, 2023, 16 (10): 14418- 14437
|
49 |
WEI K, LI J, MA C, et al Personalized federated learning with differential privacy and convergence guarantee[J]. IEEE Transactions on Information Forensics and Security, 2023, 6 (18): 4488- 4503
|
50 |
FRIEDRICH T, NEUMANN F. What’s hot in evolutionary computation [C]// Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence . [S.l.]: AAAI, 2017: 5046–5066.
|
51 |
AZIZ R M, MAHTO R, GOEL K, et al Modified genetic algorithm with deep learning for fraud transactions of Ethereum smart contract[J]. Applied Sciences, 2023, 13 (2): 697
doi: 10.3390/app13020697
|
52 |
ZOU H, JIN X, WEN M, et al Genetic algorithm aided compressed sensing detector for differential space-time media-based modulation[J]. IEEE Transactions on Vehicular Technology, 2023, 5 (72): 6874- 6878
|
53 |
BICHARA R M, ASADALLAH F A B, AWAD M, et al Quantum genetic algorithm for the design of miniaturized and reconfigurable IoT antennas[J]. IEEE Transactions on Antennas and Propagation, 2023, 71 (5): 3894- 3904
doi: 10.1109/TAP.2023.3245199
|
54 |
SALTO C, MINETTI G, ALBA E, et al Big optimization with genetic algorithms: Hadoop, Spark, and MPI[J]. Soft Computing, 2023, 27: 11469- 11484
doi: 10.1007/s00500-023-08301-x
|
55 |
HUANG J, HUANG X, CUI Y, et al. A Hadoop configuration optimization method based on middle platform business operation requirements [C]// 2023 IEEE International Conference on Sensors , Electronics and Computer Engineering . Jinzhou: IEEE, 2023: 1211–1216.
|
56 |
SEETHALAKSHMI V, GOVINDASAMY, AKILA V Real-coded multi-objective genetic algorithm with effective queuing model for efficient job scheduling in heterogeneous Hadoop environment[J]. Journal of King Saud University: Computer and Information Sciences, 2022, 6 (34): 3178- 3190
|
57 |
KALIA K, GUPTA N Analysis of hadoop MapReduce scheduling in heterogeneous environment[J]. Ain Shams Engineering Journal, 2021, 12 (1): 1101- 1110
doi: 10.1016/j.asej.2020.06.009
|
58 |
CHEN M, GUO Y, JIN Y, et al An environment-driven hybrid evolutionary algorithm for dynamic multi-objective optimization problems[J]. Complex and Intelligent Systems, 2023, 9: 659- 675
doi: 10.1007/s40747-022-00824-4
|
59 |
JIANG S, ZOU J, YANG S, et al Evolutionary dynamic multi-objective optimisation: a survey[J]. ACM Computing Surveys, 2022, 55 (4): 76
|
60 |
SAHMOUD S, TOPCUOGLU H R. Sensor-based change detection schemes for dynamic multi-objective optimization problems [C]// 2016 IEEE Symposium Series on Computational Intelligence (SSCI) . Athens: IEEE, 2016: 1–8.
|
61 |
RICHTER H. Detecting change in dynamic fitness landscapes [C]// 2009 IEEE Congress on Evolutionary Computation . Trondheim: IEEE, 2009: 1613–1620.
|
62 |
JIANG S, YANG S A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization[J]. IEEE Transactions on evolutionary Computation, 2017, 21 (1): 65- 82
doi: 10.1109/TEVC.2016.2574621
|
63 |
YAN L, QI W, LIANG J, et al Inter-individual correlation and dimension based dual learning for dynamic multi-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2023, 6 (27): 1780- 1793
|
64 |
HU Y, ZHENG J, JIANG S, et al A Mahalanobis distance-based approach for dynamic multi-objective optimization with stochastic changes[J]. IEEE Transactions on Evolutionary Computation, 2024, 28 (1): 238- 251
doi: 10.1109/TEVC.2023.3253850
|
65 |
MORALES-HERNÁNDEZ A, VAN NIEUWENHUYSE I, ROJAS GONZALEZ S A survey on multi-objective hyperparameter optimization algorithms for machine learning[J]. Artificial Intelligence Review, 2023, 56: 8043- 8093
doi: 10.1007/s10462-022-10359-2
|
66 |
HASSAN E, SHAMS M Y, HIKAL N A, et al The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study[J]. Multimedia Tools and Applications, 2023, 82: 16591- 16633
doi: 10.1007/s11042-022-13820-0
|
67 |
ZHOU G, ZHAO L, ZHENG G, et al Joint multi-objective optimization for radio access network slicing using multi-agent deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2023, 72 (9): 11828- 11843
doi: 10.1109/TVT.2023.3268671
|
68 |
ZHANG X, YU G, JIN Y, et al An adaptive Gaussian process based manifold transfer learning to expensive dynamic multi-objective optimization[J]. Neurocomputing, 2023, 538: 126212
doi: 10.1016/j.neucom.2023.03.073
|
69 |
BARBA-GONZÁLEZ C, GARCÍA-NIETO J, NEBRO A J, et al jMetalSP: a framework for dynamic multi-objective big data optimization[J]. Applied Soft Computing, 2017, 69: 737- 748
|
70 |
BARBA-GONZÁLEZ C, NEBRO A J , BENÍTEZ-HIDALGO A, et al. On the design of a framework integrating an optimization engine with streaming technologies [J]. Future Generation Computer Systems , 2020, 107: 538–550.
|
71 |
NEBRO A J, RUIZ A B, BARBA-GONZÁLEZ C, et al InDM2: interactive dynamic multi-objective decision making using evolutionary algorithms[J]. Swarm and Evolutionary Computation, 2018, 40: 184- 195
doi: 10.1016/j.swevo.2018.02.004
|
72 |
ISMAYILOV G, TOPCUOGLU H R Neural network based multi-objective evolutionary algorithm for dynamic workflow scheduling in cloud computing[J]. Future Generation Computer Systems, 2020, 102: 307- 322
doi: 10.1016/j.future.2019.08.012
|
73 |
IBARRONDO R, GATTI G, SANZ M Quantum genetic algorithm with individuals in multiple registers[J]. IEEE Transactions on Evolutionary Computation, 2024, 28 (3): 788- 797
doi: 10.1109/TEVC.2023.3296780
|
74 |
DING W, LIN C T, CHEN S, et al Multiagent-consensus-MapReduce-based attribute reduction using co-evolutionary quantum PSO for big data applications[J]. Neurocomputing, 2018, 272: 136- 153
doi: 10.1016/j.neucom.2017.06.059
|
75 |
CAO B, ZHAO J, LV Z, et al A distributed parallel cooperative coevolutionary multiobjective evolutionary algorithm for large-scale optimization[J]. IEEE Transactions on Industrial Informatics, 2017, 13 (4): 2030- 2038
doi: 10.1109/TII.2017.2676000
|
76 |
CAO B, ZHAO J, YANG P, et al 3-D multiobjective deployment of an industrial wireless sensor network for maritime applications utilizing a distributed parallel algorithm[J]. IEEE Transactions on Industrial Informatics, 2018, 14 (12): 5487- 5495
doi: 10.1109/TII.2018.2803758
|
77 |
CAO B, FAN S, ZHAO J, et al Quantum-enhanced multiobjective large-scale optimization via parallelism[J]. Swarm and Evolutionary Computation, 2020, 57: 100697
doi: 10.1016/j.swevo.2020.100697
|
78 |
QI S, WANG R, ZHANG T, et al Cooperative coevolutionary competition swarm optimizer with perturbation for high-dimensional multi-objective optimization[J]. Information Sciences, 2023, 644: 119253
doi: 10.1016/j.ins.2023.119253
|
79 |
刘建昌, 李飞, 王洪海, 等 进化高维多目标优化算法研究综述[J]. 控制与决策, 2018, 33 (5): 879- 887 LIU Jianchang, LI Fei, WANG Honghai, et al Survey on evolutionary many-objective optimization algorithms[J]. Control and Decision, 2018, 33 (5): 879- 887
|
80 |
HUSSAIN M M, FUJIMOTO N GPU-based parallel multi-objective particle swarm optimization for large swarms and high dimensional problems[J]. Parallel Computing, 2020, 92: 102589
doi: 10.1016/j.parco.2019.102589
|
81 |
ELMEILIGY M A, DESOUKY A I E, ELGHAMRAWY S M An efficient parallel indexing structure for multi-dimensional big data using Spark[J]. The Journal of Supercomputing, 2021, 77: 11187- 11214
doi: 10.1007/s11227-021-03718-3
|
82 |
SHE Q, ZHANG J, ZHOU Y, et al. Distributed high-dimension matrix operation optimization on Spark [C]// 2019 Eleventh International Conference on Advanced Computational Intelligence . Guilin: IEEE, 2019: 268–273.
|
83 |
ESCOBAR J J, ORTEGA J, GONZÁLEZ J, et al. Issues on GPU parallel implementation of evolutionary high-dimensional multi-objective feature selection [C]// Applications of Evolutionary Computation . [S.l.]: Springer, 2017: 773–788.
|
84 |
ZAPOTECAS-MARTÍNEZ S, COELLO C A C, AGUIRRE H E, et al A review of features and limitations of existing scalable multiobjective test suites[J]. IEEE Transactions on Evolutionary Computation, 2018, 23 (1): 130- 142
|
85 |
DEB K, THIELE L, LAUMANNS M, et al. Scalable test problems for evolutionary multiobjective optimization [M]// ABRAHAM A, JAIN L, GOLDBERG R. Evolutionary multiobjective optimization: theoretical advances and applications . [S.l.]: Springer, 2005: 105–145.
|
86 |
HUBAND S, HINGSTON P, BARONE L, et al A review of multiobjective test problems and a scalable test problem toolkit[J]. IEEE Transactions on Evolutionary Computation, 2006, 10 (5): 477- 506
doi: 10.1109/TEVC.2005.861417
|
87 |
EMMERICH M T M, DEUTZ A H. Test problems based on Lamé superspheres [C]// Evolutionary Multi-Criterion Optimization . [S.l.]: Springer, 2007: 922–936.
|
88 |
CHENG R, LI M, TIAN Y, et al A benchmark test suite for evolutionary many-objective optimization[J]. Complex and Intelligent Systems, 2017, 3: 67- 81
doi: 10.1007/s40747-017-0039-7
|
89 |
LIANG J J, QU B Y, GONG D W, et al. Problem definitions and evaluation criteria for the CEC special session on multimodal multiobjective optimization [R]. Zhengzhou: Zhengzhou University, 2019: 1–25.
|
90 |
YUE C, QU B, LIANG J A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems[J]. IEEE Transactions on Evolutionary Computation, 2018, 22 (5): 805- 817
doi: 10.1109/TEVC.2017.2754271
|
91 |
LIU Y, YEN G G, GONG D A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies[J]. IEEE Transactions on Evolutionary Computation, 2019, 23 (4): 660- 674
doi: 10.1109/TEVC.2018.2879406
|
92 |
TIAN Y, LIU R, ZHANG X, et al A multipopulation evolutionary algorithm for solving large-scale multimodal multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2021, 25 (3): 405- 418
doi: 10.1109/TEVC.2020.3044711
|
93 |
LI H, ZHANG Q, DENG J Biased multiobjective optimization and decomposition algorithm[J]. IEEE Transactions on Cybernetics, 2017, 47 (1): 52- 66
doi: 10.1109/TCYB.2015.2507366
|
94 |
JAIN H, DEB K An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach[J]. IEEE Transactions on Evolutionary Computation, 2014, 18 (4): 602- 622
doi: 10.1109/TEVC.2013.2281534
|
95 |
DEB K, JAIN H An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18 (4): 577- 601
doi: 10.1109/TEVC.2013.2281535
|
96 |
CHENG R, JIN Y, OLHOFER M, et al Test problems for large-scale multiobjective and many-objective optimization[J]. IEEE Transactions on Cybernetics, 2017, 47 (12): 4108- 4121
doi: 10.1109/TCYB.2016.2600577
|
97 |
FARINA M, DEB K, AMATO P Dynamic multiobjective optimization problems: test cases, approximations, and applications[J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (5): 425- 442
doi: 10.1109/TEVC.2004.831456
|
98 |
JIANG S, YANG S Evolutionary dynamic multiobjective optimization: benchmarks and algorithm comparisons[J]. IEEE Transactions on Cybernetics, 2017, 47 (1): 198- 211
doi: 10.1109/TCYB.2015.2510698
|
99 |
JIANG S, YANG S, YAO X, et al. Benchmark functions for the CEC’2018 competition on dynamic multiobjective optimization [R]. [S.l.]: Newcastle University, 2018: 1–18.
|
100 |
GONZALES-ZURITA O, ANDINO O L, CLAIRAND J M, et al PSO tuning of a second-order sliding mode controller for adjusting active standard power levels for smart inverter applications[J]. IEEE Transactions on Smart Grid, 2023, 6 (14): 4182- 4193
|
101 |
SUN X, JIN Z, XUE M, et al Adaptive ECMS with gear shift control by grey wolf optimization algorithm and neural network for plug-in hybrid electric buses[J]. IEEE Transactions on Industrial Electronics, 2024, 71 (1): 667- 677
doi: 10.1109/TIE.2023.3243304
|
102 |
LIU R, LIANG Z, WANG Z, et al Indoor visible light positioning based on improved whale optimization method with Min-Max algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2504910
|
103 |
LIU Q, ZENG L, BILAL M, et al A multi-swarm PSO approach to large-scale task scheduling in a sustainable supply chain datacenter[J]. IEEE Transactions on Green Communications and Networking, 2023, 7 (4): 1667- 1677
doi: 10.1109/TGCN.2023.3283509
|
104 |
KENNEDY J, EBERHART R. Particle swarm optimization [C]// Proceedings of ICNN'95: International Conference on Neural Networks . Perth: IEEE, 1995, 4: 1942–1948.
|
105 |
PRADHAN A, BISOY S K, DAS A A survey on PSO based meta-heuristic scheduling mechanism in cloud computing environment[J]. Journal of King Saud University: Computer and Information Sciences, 2022, 34 (8): 4888- 4901
doi: 10.1016/j.jksuci.2021.01.003
|
106 |
AKMAN A, YENIAD M. Optimizing load balancing and task scheduling problems in cloud computing [C]// 2023 8th International Conference on Computer Science and Engineering (UBMK) . Burdur: IEEE, 2023: 119–124.
|
107 |
ALSAIDY S A, ABBOOD A D, SAHIB M A Heuristic initialization of PSO task scheduling algorithm in cloud computing[J]. Journal of King Saud University: Computer and Information Sciences, 2020, 34 (6): 2370- 2382
|
108 |
GAD A G, HOUSSEIN E H, ZHOU M C, et al Damping-assisted evolutionary swarm intelligence for industrial IoT task scheduling in cloud computing[J]. IEEE Internet of Things Journal, 2024, 11 (1): 1698- 1710
doi: 10.1109/JIOT.2023.3291367
|
109 |
LIAO C L, LEE S J, CHIOU Y S, et al Power consumption minimization by distributive particle swarm optimization for luminance control and its parallel implementations[J]. Expert Systems with Applications, 2018, 96: 479- 491
doi: 10.1016/j.eswa.2017.11.002
|
110 |
ZHUO Y, ZHANG T, DU F, et al A parallel particle swarm optimization algorithm based on GPU/CUDA[J]. Applied Soft Computing, 2023, 144: 110499
doi: 10.1016/j.asoc.2023.110499
|
111 |
WEN T, LIU H, LIN L, et al Multiswarm artificial bee colony algorithm based on Spark cloud computing platform for medical image registration[J]. Computer Methods and Programs in Biomedicine, 2020, 192: 105432
doi: 10.1016/j.cmpb.2020.105432
|
112 |
LAKSHMANAPRABU S K, SHANKAR K, RANI S S, et al An effect of big data technology with ant colony optimization based routing in vehicular ad hoc networks: towards smart cities[J]. Journal of Cleaner Production, 2019, 217: 584- 593
doi: 10.1016/j.jclepro.2019.01.115
|
113 |
SKINDEROWICZ R Implementing a GPU-based parallel MAX-MIN ant system[J]. Future Generation Computer Systems, 2020, 106: 277- 295
doi: 10.1016/j.future.2020.01.011
|
114 |
BANCHHOR C, SRINIVASU N Integrating cuckoo search-grey wolf optimization and correlative naive Bayes classifier with map reduce model for big data classification[J]. Data and Knowledge Engineering, 2020, 127: 101788
doi: 10.1016/j.datak.2019.101788
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|