Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (8): 1767-1774    DOI: 10.3785/j.issn.1008-973X.2025.08.024
    
CAV mixed traffic flow characteristics considering feedback from multiple preceding vehicles
Qingchang LU(),Xu MENG,Liping LIU,Yongquan REN,Shixin WANG
School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China
Download: HTML     PDF(961KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A key limitation in existing research, namely the neglect of the capability of connected and automated vehicle (CAV) was addressed in order to receive feedback from multiple preceding vehicles beyond direct physical constraints. An improved car-following model, termed I-CACC, was proposed by incorporating multi-predecessor information feedback in order to evaluate the impacts of varying CAV penetration rates and vehicle platoon configurations on mixed traffic flow stability and fundamental diagram property. The spacing differentials between multiple preceding vehicles and the subject vehicle were employed as a criterion to quantify influence weights. A platoon configuration model was developed based on platoon intensity and Markov chain theory. The platoon stability and fundamental diagram property of mixed traffic flow were simulated and analyzed. Results showed that the stability of the mixed traffic platoon was maximized when the CAV penetration rate reached 0.7 and the platoon intensity was 0.5. Stability deteriorated beyond these thresholds. The capacity of a pure CAV flow with multi-predecessor feedback increased by 3.09 times compared with that of a pure human-driven vehicle (HV) flow, whereas the improvement was limited to 2.36 times when adopting the conventional CACC model in pure CAV flow.



Key wordsmixed traffic flow      car following model      platoon intensity      stability      fundamental diagram property     
Received: 01 October 2024      Published: 28 July 2025
CLC:  U 491  
Fund:  国家自然科学基金资助项目(52232012,72471035).
Cite this article:

Qingchang LU,Xu MENG,Liping LIU,Yongquan REN,Shixin WANG. CAV mixed traffic flow characteristics considering feedback from multiple preceding vehicles. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1767-1774.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.08.024     OR     https://www.zjujournals.com/eng/Y2025/V59/I8/1767


考虑多前车信息反馈的CAV混合交通流特性

针对当前研究忽略了CAV可跨物理限制接收多前车信息反馈特性的问题,建立考虑多前车信息反馈的I-CACC车辆跟驰模型,分析不同CAV渗透率及队列排列对混合交通流稳定性和基本图特性的影响. 构建I-CACC跟驰模型,采用多前车与主体车的间距差作为判定影响程度的标准. 基于排队强度和马尔科夫链理论,建立混合交通流的队列排列模型. 仿真分析混合交通流的队列稳定性和基本图特性. 结果表明,当CAV采用I-CACC模型,渗透率达到0.7以及队列排队强度为0.5时,混合交通流的队列稳定性最大;当渗透率大于0.7或队列排队强度大于0.5时,稳定性下降. 考虑多前车信息反馈的纯CAV交通流通行能力较纯HV流通行能力提高了3.09倍,相比于采用CACC模型的纯CAV交通流,这一提升仅为2.36倍.


关键词: 混合交通流,  跟驰模型,  排队强度,  稳定性,  基本图特性 
Fig.1 Schematic diagram of information transfer process of I-CACC model
Fig.2 Schematic of queue arrangement under different queuing intensity
Fig.3 Change in F-value under different CAV permeability levels
Fig.4 Changes in $\overline \mu $ -value under different permeability levels
Fig.5 Change in F-value under different platoon intensity
Fig.6 Change in $\overline \mu $-value under different platoon intensity
Fig.7 Overall stability change of mixed traffic flow
Fig.8 Flow-density map for CAV using CACC model
Fig.9 Flow-density map for CAV using I-CACC model
PC${k_{\mathrm{M}}}$/(PCU·km?1${C_{}}$/(PCU·h?1)${v_{\mathrm{M}}}$/
(km·h?1)
I-CACCCACCI-CACCCACC
024.7924.791738173870.128
0.325.8325.671 9231 91174.448
0.528.0927.332212215380.476
0.731.2729.232658248484.996
1.042.6637.1453844109120
Tab.1 Fundamental diagram property of mixed traffic flow with different ${P_{\mathrm{C}}}$
Fig.10 Flow-density map for CAV using CACC model
Fig.11 Flow-density map for CAV using I-CACC model
PI${k_{\mathrm{M}}}$/(PCU·km?1${C_{}}$/(PCU·h?1)
I-CACCCACCI-CACCCACC
?1.024.6824.6819431943
?0.526.5926.3920942078
028.0927.3322122153
0.529.2128.0923012212
1.031.3929.4524722319
Tab.2 Fundamental diagram property of mixed traffic flow with different PI
[1]   BANSAL P, KOCKELMAN K M Forecasting Americans’ long-term adoption of connected and autonomous vehicle technologies[J]. Transportation Research Part A: Policy and Practice, 2017, 95: 49- 63
doi: 10.1016/j.tra.2016.10.013
[2]   路庆昌, 秦汉, 刘鹏, 等 基于MFD的快速路新型混合交通流特性分析[J]. 东南大学学报: 自然科学版, 2023, 53 (5): 905- 914
LU Qingchang, QIN Han, LIU Peng, et al Characteristic analysis on MFD-based new mixed traffic flow on expressways[J]. Journal of Southeast University: Natural Science Edition, 2023, 53 (5): 905- 914
[3]   秦严严, 王昊, 冉斌 CACC 车辆跟驰建模及混合交通流分析[J]. 交通运输系统工程与信息, 2018, 18 (2): 60- 65
QIN Yanyan, WANG Hao, RAN Bin Vehicle following modeling and mixed traffic flow analysis with CACC[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18 (2): 60- 65
[4]   宋成举 协同自适应巡航控制车辆跟驰模型优化及仿真分析[J]. 武汉理工大学学报: 交通科学与工程版, 2021, 45 (6): 1029- 1033
SONG Chengju Optimization and simulation analysis of vehicle following model for collaborative adaptive cruise control[J]. Journal of Wuhan University of Technology: Traffic Science and Engineering Edition, 2021, 45 (6): 1029- 1033
[5]   LI R, SUN S, WU Y, et al Fundamental diagram of mixed traffic flow considering time lags, platooning intensity, and the degradation of connected automated vehicles[J]. Physica A: Statistical Mechanics and its Applications, 2023, 627: 129130
doi: 10.1016/j.physa.2023.129130
[6]   宋慧, 曲大义, 王少杰, 等 考虑多车响应的网联混行车流跟驰模型及稳态分析[J]. 吉林大学学报: 工学版, 2024, 54 (11): 3220- 3230
SONG Hui, QU Dayi, WANG Shaojie, et al Connected mixed traffic flow car-following model and stability analysis considering multiple vehicles response[J]. Journal of Jilin University: Engineering and Technology Edition, 2024, 54 (11): 3220- 3230
[7]   孙启鹏, 武智刚, 曹宁博, 等 基于风险预测的自动驾驶车辆行为决策模型[J]. 浙江大学学报: 工学版, 2022, 56 (9): 1761- 1771
SUN Qipeng, WU Zhigang, CAO Ningbo, et al Decision-making model of autonomous vehicle behavior based on risk prediction[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (9): 1761- 1771
[8]   WANG S Y, YU B, WU M Y MVCM car-following model for connected vehicles and simulation-based traffic analysis in mixed traffic flow[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23 (6): 5267- 5274
[9]   XIE D F, ZHAO X M, HE Z B Heterogeneous traffic mixing regular and connected vehicles: modeling and stabilization[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (6): 2060- 2071
doi: 10.1109/TITS.2018.2857465
[10]   ZONG F, WANG M, TANG M, et al An improved intelligent driver model considering the information of multiple front and rear vehicles[J]. IEEE Access, 2021, 9: 66241- 66252
doi: 10.1109/ACCESS.2021.3072058
[11]   GHIASI A, HUSSAIN O, QIAN Z S, et al A mixed traffic capacity analysis and lane management model for connected automated vehicles: a Markov chain method[J]. Transportation Research Part B: Methodological, 2017, 106: 266- 292
doi: 10.1016/j.trb.2017.09.022
[12]   YAO Z, WU Y, WANG Y, et al Analysis of the impact of maximum platoon size of CAVs on mixed traffic flow: an analytical and simulation method[J]. Transportation Research Part C: Emerging Technologies, 2023, 147: 103989
doi: 10.1016/j.trc.2022.103989
[13]   ZHOU J, ZHU F Analytical analysis of the effect of maximum platoon size of connected and automated vehicles[J]. Transportation Research Part C: Emerging Technologies, 2021, 122: 102882
doi: 10.1016/j.trc.2020.102882
[14]   JIANG Y S, ZHU F Y, GU Q F, et al Influence of CAVs platoon characteristics on fundamental diagram of mixed traffic flow[J]. Physica A: Statistical Mechanics and its Applications, 2023, 624: 128906
doi: 10.1016/j.physa.2023.128906
[15]   曹宁博, 陈家辉, 赵利英 智能网联车和人驾车辆混合交通流排队长度估计模型[J]. 浙江大学学报: 工学版, 2024, 58 (9): 1935- 1944
CAO Ningbo, CHEN Jiahui, ZHAO Liying Queue length estimation model for mixed traffic flow of intelligent connected vehicles and human-driven vehicles[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (9): 1935- 1944
[16]   PLOEG J, SEMSAR-KAZEROONI E, LIJSTER G, et al Graceful degradation of cooperative adaptive cruise control[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16 (1): 488- 497
doi: 10.1109/TITS.2014.2349498
[17]   CI Y, WU H, SUN Y, et al A prediction model with wavelet neural network optimized by the chicken swarm optimization for on-ramps metering of the urban expressway[J]. Journal of Intelligent Transportation Systems, 2022, 26 (3): 356- 365
doi: 10.1080/15472450.2021.1890070
[18]   TREIBER M, HENNECKE A, HELBING D Congested traffic states in empirical observations and microscopic simulations[J]. Physical Review E, 2000, 62 (2): 1805- 1824
doi: 10.1103/PhysRevE.62.1805
[19]   WARD J A. Heterogeneity, lane-changing and instability in traffic: a mathematical approach [D]. Bristol: University of Bristol, 2009.
[1] Shencun YE,Bing ZHOU,Tian CHAI,Nianfei GAN,Shuai HE. Vehicle collision severity minimization strategy in unavoidable collision scenario[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 362-374.
[2] Yicheng LIU,Jialing YANG,Rui TANG,Jing CHENG. Predefined time adaptive sliding mode control for flexible space robot[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 351-361.
[3] Ningbo CAO,Jiahui CHEN,Liying ZHAO. Queue length estimation model for mixed traffic flow of intelligent connected vehicles and human-driven vehicles[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1935-1944.
[4] Zijun WANG,Kehao ZHUANG,Huanhai XIN,Dawei SUN,Linlin WU,Xiao WANG. Transient stability analysis of direct-driven wind turbines based on self-synchronous control[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 867-878.
[5] Zhou JIA,Xu XIE,Tianjia WANG,Cheng CHENG. Seismic damage characteristics of steel tower of cable-stayed bridge and influence of input ground motion parameters[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 817-827.
[6] San-bo DING,Kang ZHANG,Fei-sheng YANG,Jia-an ZHANG. Event-triggered load frequency control for power system based on dynamic quantization[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1460-1469.
[7] Ying ZHAO,Da WANG,Jia-hua NI,Yong-hui LING,Ji XIANG,Ting-ting ZHENG. Energy storage sliding mode controller for controlling acceleration power of synchronous generator[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 1050-1060.
[8] Ting-guo CHEN,Zhao-di GUO. Stability of axial compression bars with inter-bar torsional constraints[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 598-605.
[9] Guan-zhong WANG,Yi-xin WANG,Yang-qing DAN,Ying-jing HE,Hao WU. Qualitative analysis of critical mode for voltage stability in multi-infeed DC system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 616-624.
[10] Jun-xian JIANG,Qi-chao CHEN,Fei WANG,Yi-xin WANG,Chen LI,Guan-zhong WANG. Grid strength analysis of hybrid multi-infeed HVDC system considering different control modes[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2305-2313.
[11] Qi-bin ZHUANG,Huan-bin ZHANG,Zhi-rong LIU,Rui ZHU. Water flow field evolution characteristics of oblique water-exit process for different shapes underwater launched vehicles[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 200-208.
[12] Ao ZHOU,Bin WANG,Jie-tao LI,Xin ZHOU,Wen-jun XIA. Long-term stability analysis and deformation prediction of soft soil foundation pit in Taihu Tunnel[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 692-701.
[13] En-yu WU,Guo-dong QIAN,Bin LI. Water adsorption in aluminum-based metal-organic framework for atmospheric water harvesting[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 186-192.
[14] Jia-yi SHEN,Meng KU,Li-zhong WANG. Stability analyses of submarine slopes based on shear band propagation method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1299-1307.
[15] Jia-jia WANG,Ying-feng CAI,Long CHEN,Shao-hua WANG,De-hua SHI. Coordinated control of hybrid electric vehicle based on extended state observer estimation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1225-1233.