Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (11): 2305-2313    DOI: 10.3785/j.issn.1008-973X.2023.11.018
    
Grid strength analysis of hybrid multi-infeed HVDC system considering different control modes
Jun-xian JIANG1(),Qi-chao CHEN2,Fei WANG2,Yi-xin WANG1,Chen LI3,Guan-zhong WANG4,*()
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
2. State Grid Economic and Technological Research Institute Co. Ltd, Beijing 102209, China
3. State Grid Jiangsu Economic Research Institute, Nanjing 210008, China
4. Key Laboratory of Power System Intelligent Dispatch and Control, Ministry of Education, Shandong University, Jinan 250061, China
Download: HTML     PDF(1658KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A variety of high voltage direct current (HVDC) control methods were synthesized, in order to further improve the voltage support strength evaluation method of hybrid multi-infeed HVDC system based on network modal decoupling. The purpose is to make it suitable for the voltage stability analysis of hybrid multi-infeed HVDC systems with heterogeneous line commutated converter based HVDC (LCC-HVDC) and voltage source converter based HVDC (VSC-HVDC). The Jacobian matrix of the DC side for the LCC-HVDC system was derived, taking into account various control methods. The impact of LCC-HVDC control method on voltage stability margin was qualitatively analyzed, and based on this, an assessment method for the grid strength of a heterogeneous LCC-HVDC multi-input system was proposed. The main contradictions in voltage stability issues in mixed DC input systems were accurately grasped. The secondary influencing factors were approximated in the form of modal perturbations to maintain the practicality and convenience of the grid strength assessment method. The effectiveness of the proposed method was demonstrated through numerical calculations and time-domain simulations. Analysis results show that the constant extinction angle control mode of LCC-HVDC is the dominant control mode that deteriorates power system voltage stability. The voltage stability of the hybrid multi-infeed high voltage direct current (HVDC) system is stronger as the HVDC capacity decreases or the contact admittance increases.



Key wordsnetwork modal decouple      hybrid multi-infeed high voltage direct current (HVDC) system      voltage stability      control mode      grid strength     
Received: 24 October 2022      Published: 11 December 2023
CLC:  TU 111  
Fund:  国家电网有限公司科技资助项目 (5100-202156020A-0-0-00)
Corresponding Authors: Guan-zhong WANG     E-mail: jx.jiang@zju.edu.cn;eewgz@sdu.edu.cn
Cite this article:

Jun-xian JIANG,Qi-chao CHEN,Fei WANG,Yi-xin WANG,Chen LI,Guan-zhong WANG. Grid strength analysis of hybrid multi-infeed HVDC system considering different control modes. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2305-2313.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.11.018     OR     https://www.zjujournals.com/eng/Y2023/V57/I11/2305


计及不同控制方式的混合直流多馈入系统电网强度评估

综合多种高压直流(HVDC)控制方式,进一步完善基于交流网络模态解耦的混合直流多馈入系统电网强度评估方法,使之适用于异构的基于电网换相换流器的高压直流输电(LCC-HVDC)和基于电压源型换流器的高压直流输电(VSC-HVDC)的混合直流多馈入系统的电压稳定分析. 推导计及多种控制方式的LCC-HVDC直流侧雅克比矩阵,定性分析LCC-HVDC控制方式对电压稳定裕度的影响规律,在此基础上提出异构LCC-HVDC多馈入系统的电网强度评估方法. 把握混合直流馈入系统电压稳定问题中的主要矛盾,将次要影响因素以模态摄动的形式进行近似计算,以保持电网强度评估方法的实用性和便捷性. 通过数值计算和时域仿真说明所提方法的有效性. 分析结果表明,LCC-HVDC的受端定熄弧角控制方式是恶化系统电压稳定性的主导控制模式,混合直流多馈入系统的电压稳定性随着直流容量减小或联络导纳增大而增强.


关键词: 网络模态解耦,  混合高压直流(HVDC)多馈入系统,  电压稳定,  控制方式,  电网强度 
Fig.1 Equivalent circuit of LCC-HVDC infeed system
Fig.2 Analysis flow of system Jacobian matrix considering VSC-HVDC
Fig.3 Static voltage stability evaluation process of HMIDC
馈入控制方式 ${C_{\rm{c}}}$ $X$ $\gamma $ ${P_i}$
LCC-HVDC 1(CP-CEA) 0.536 0.536 18 1
LCC-HVDC 2(CP-CEA) 0.536 1.000 15 1
LCC-HVDC 3(CP-CEA) 0.536 0.180 25 1
Tab.1 DC side parameters of LCC-HVDC triple-infeed system
节点i 节点j 导纳标幺值 节点i 节点j 导纳标幺值
1 0 ?4.5 2 3 1.5
1 2 1.3 3 0 ?5.6
1 3 1.6 3 1 1.6
2 0 ?5.8 3 2 1.5
2 1 1.3
Tab.2 AC equivalent parameters of LCC-HVDC triple-infeed system
Fig.4 Variation curve of grid strength with DC power
馈入控制方式 Cc τ X γ PN QN
LCC-HVDC 1
(CP-CEA)
0.536 1 0.15 18 1.00
LCC-HVDC 2
(CP-CEA)
0.536 1 0.18 21 1.00
VSC-HVDC 3
Pv/Qv
0.76 0.62
Tab.3 DC side parameters of hybrid triple-infeed system
节点i 节点j 导纳标幺值 节点i 节点j 导纳标幺值
1 0 ?4.2 2 3 1.4
1 2 1.2 3 0 ?6.2
1 3 1.8 3 1 1.8
2 0 ?6 3 2 1.4
2 1 1.2
Tab.4 AC equivalent parameters of hybrid triple-infeed system
Fig.5 Power curves in MIDC system
Fig.6 Voltage curves in MIDC system
Fig.7 Time domain simulation of HMIDC system
Fig.8 IEEE-39 system model
Fig.9 Time domain simulation of IEEE-39 system
[1]   康重庆, 姚良忠 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41 (9): 2- 11
KANG Chong-qing, YAO Liang-zhong Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41 (9): 2- 11
[2]   程耀华, 张宁, 王佳明, 等 面向高比例可再生能源并网的输电网规划方案综合评价[J]. 电力系统自动化, 2019, 43 (3): 33- 42
CHENG Yao-hua, ZHANG Ning, WANG Jia-ming, et al Comprehensive evaluation of transmission network planning for integration of high-penetration renewable energy[J]. Automation of Electric Power Systems, 2019, 43 (3): 33- 42
doi: 10.7500/AEPS20180321012
[3]   李兆伟, 翟海保, 刘福锁, 等 华东大受端电网直流接入能力评估[J]. 电力系统自动化, 2016, 40 (16): 147- 152
LI Zhao-wei, ZHAI Hai-bao, LIU Fu-suo, et al DC access capability evaluation for East China power grid[J]. Automation of Electric Power Systems, 2016, 40 (16): 147- 152
[4]   夏成军, 王真, 周保荣, 等 VSC-HVDC 对LCC-HVDC 受端系统电压支撑强度的影响[J]. 电网技术, 2019, 43 (6): 2031- 2038
XIA Cheng-jun, WANG Zhen, ZHOU Bao-rong, et al The effect of VSC-HVDC on the voltage support strength of LCC-HVDC receiving end system[J]. Power System Technology, 2019, 43 (6): 2031- 2038
[5]   杨海涛, 吉平, 苗淼, 等 未来中国特高压电网结构形态与电源组成相互关系分析[J]. 电力系统自动化, 2018, 42 (6): 9- 17
YANG Hai-tao, JI Ping, MIAO Miao, et al Analysis on interrelationship between future UHV power grid structural form and power source composition in China[J]. Automation of Electric Power Systems, 2018, 42 (6): 9- 17
doi: 10.7500/AEPS20170808004
[6]   肖浩, 李银红, 段献忠 计及 LCC-HVDC 交直流系统静态电压稳定的综合短路比强度指标[J]. 中国电机工程学报, 2017, 37 (14): 4008- 4017
XIAO Hao, LI Yin-hong, DUAN Xian-zhong Integrated short circuit ratio strength index based on the static voltage stability of the LCC-HVDC systems[J]. Proceedings of the CSEE, 2017, 37 (14): 4008- 4017
[7]   徐政 联于弱交流系统的直流输电特性研究之一: 直流输电的输送能力[J]. 电网技术, 1997, 21 (1): 12- 16
XU Zheng Characteristics of HVDC connected to weak AC systems: Part 1: HVDC transmission capability[J]. Power System Technology, 1997, 21 (1): 12- 16
[8]   邵瑶, 汤涌 多馈入直流系统交互作用因子的影响因素分析[J]. 电网技术, 2013, 37 (3): 794- 799
SHAO Yao, TANG Yong Analysis of influencing factors of multi-infeed HVDC system interaction factor[J]. Power System Technology, 2013, 37 (3): 794- 799
doi: 10.13335/j.1000-3673.pst.2013.03.041
[9]   Guide for planning DC links terminating at AC locations having low short-circuit capacities, IDT: IEEE Std 1204-1997 [S]. New York: American Nuclear Society Specification, 1997.
[10]   AIK D L H, ANDERSSON G An equivalent single-infeed model of multi-infeed HVDC systems for voltage and power stability analysis[J]. IEEE Transactions on Power Delivery, 2015, 31 (1): 303- 312
[11]   辛焕海, 章枫, 于洋, 等 多馈入直流系统广义短路比: 定义与理论分析[J]. 中国电机工程学报, 2016, 36 (3): 633- 647
XIN Huan-hai, ZHANG Feng, YU Yang, et al Generalized short circuit ratio for multi-infeed DC system: definition and theoretical analysis[J]. Proceedings of the CSEE, 2016, 36 (3): 633- 647
[12]   汤涌. 电力系统电压稳定性分析[M]. 北京: 科学出版社, 2011.
[13]   郭春义, 倪晓军, 赵成勇 混合多馈入直流输电系统相互作用关系的定量评估方法[J]. 中国电机工程学报, 2016, 36 (7): 1772- 1780
GUO Chun-yi, NI Xiao-jun, ZHAO Cheng-yong A quantitative evaluation method on interaction analysis of hybrid multi-infeed HVDC system[J]. Proceedings of the CSEE, 2016, 36 (7): 1772- 1780
doi: 10.13334/j.0258-8013.pcsee.2016.07.002
[14]   倪晓军, 赵成勇, 郭春义, 等 混合双馈入直流系统中VSC-HVDC 对LCC-HVDC 受端系统强度的影响[J]. 中国电机工程学报, 2015, 35 (16): 4052- 4061
NI Xiao-jun, ZHAO Cheng-yong, GUO Chun-yi, et al The effects of VSC-HVDC on the system strength of LCC-HVDC in dual-infeed hybrid HVDC System[J]. Proceedings of the CSEE, 2015, 35 (16): 4052- 4061
[15]   田宝烨, 袁志昌, 余昕越, 等 混合双馈入系统中VSC-HVDC对LCC-HVDC 受端电网强度的影响[J]. 中国电机工程学报, 2019, 39 (12): 3443- 3454
TIAN Bao-ye, YUAN Zhi-chang, YU Xin-yue, et al Influence of VSC-HVDC on the strength of LCC-HVDC receiving power grid in hybrid dual-infeed HVDC system[J]. Proceedings of the CSEE, 2019, 39 (12): 3443- 3454
[16]   NI X, GOLE A M, ZHAO C, et al An improved measure of AC system strength for performance analysis of multi-infeed HVDC systems including VSC and LCC converters[J]. IEEE Transactions on Power Delivery, 2018, 33 (1): 169- 178
doi: 10.1109/TPWRD.2017.2711363
[17]   ZHANG F, XIN H, WU D, et al Assessing strength of multi-infeed LCC-HVDC systems using generalized short circuit ratio[J]. IEEE Transactions on Power Systems, 2018, 34 (1): 467- 480
[18]   郭小江, 郭剑波, 王成山 考虑直流输电系统外特性影响的多直流馈入短路比实用计算方法[J]. 中国电机工程学报, 2015, 35 (9): 2143- 2151
GUO Xiao-jiang, GUO Jian-bo, WANG Cheng-shan Practical calculation method for multi-infeed short circuit ratio influenced by characteristics of external characteristics of DC system[J]. Proceedings of the CSEE, 2015, 35 (9): 2143- 2151
doi: 10.13334/j.0258-8013.pcsee.2015.09.006
[19]   徐政. 交直流电力系统动态行为分析[M]. 北京: 机械工业出版社, 2004.
[20]   AIK D L H, ANDERSSON G Power stability analysis of multi-infeed HVDC systems[J]. IEEE Transactions on Power Delivery, 1998, 13 (3): 923- 931
doi: 10.1109/61.686994
[21]   AIK D L H, ANDERSSON G Analysis of voltage and power interactions in multi-infeed HVDC systems[J]. IEEE Transactions on Power Delivery, 2013, 28 (2): 816- 824
doi: 10.1109/TPWRD.2012.2227510
[22]   李羽晨, 王冠中, 张静, 等 考虑光伏无功补偿的多馈入直流受端电网强度分析[J]. 电力系统自动化, 2021, 45 (15): 28- 35
LI Yu-chen, WANG Guan-zhong, ZHANG Jing, et al Strength analysis of multi-infeed receiving-end DC power grid considering photovolatic reactive power compensation[J]. Automation of Electric Power Systems, 2021, 45 (15): 28- 35
doi: 10.7500/AEPS20201019008
[23]   AIK D L H, ANDERSSON G Impact of renewable energy sources on steady-state stability of weak AC/DC systems[J]. CSEE Journal of Power and Energy Systems, 2017, 3 (4): 419- 430
doi: 10.17775/CSEEJPES.2016.01840
[24]   XIAO H, LI Y, SHI D, et al Evaluation of strength measure for static voltage stability analysis of hybrid multi-infeed DC systems[J]. IEEE Transactions on Power Delivery, 2019, 34 (3): 879- 890
doi: 10.1109/TPWRD.2019.2901831
[25]   章 枫 . 基于广义短路比的交直流电力系统电压稳定性分析 [D]. 杭州: 浙江大学, 2019.
ZHANG Feng. AC/DC power system voltage stability analysis based on generalized short circuit ratio[D]. Hangzhou: Zhejiang University, 2019.
[1] Guan-zhong WANG,Yi-xin WANG,Yang-qing DAN,Ying-jing HE,Hao WU. Qualitative analysis of critical mode for voltage stability in multi-infeed DC system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 616-624.
[2] Hui-fang WANG,Chen-yu ZHANG. Prediction of voltage stability margin in power system based on extreme gradient boosting algorithm[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 606-613.
[3] MA Ming hui, YANG Qing fang, LIANG Shi dong, XING Ru ru. Coordinated control model for freeway mainline bottleneck zone[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1700-1706.
[4] YANG Bo, ZHONG Yan-ru, ZENG Guang. DC capacitor voltage balance control strategy of cascade static synchronous compensator based on step wave modulation[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 600-609.
[5] ZHENG Jin-yang, HUANG Ze, MIAO Cun-jian, GAO Xiao-zhe, ZHU Xiao-bo,. Effect of different control modes during tensile experiment[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 2020-2024.