Electrical Engineering |
|
|
|
|
Prediction of voltage stability margin in power system based on extreme gradient boosting algorithm |
Hui-fang WANG*( ),Chen-yu ZHANG |
Department of Electrical Engineering, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract The extreme gradient boosting (XGBoost) algorithm was applied in power system voltage stability assessment problem. According to the characteristics of the voltage stability problem, a feature set which could reflect the state of a power system was defined. Taking the absolute value of voltage stability margin as the mapping target, the method to generate the sample set was studied. Based on the introduction of the basic principle of the XGBoost algorithm, the technical details of the algorithm were discussed. The algorithm was evaluated in the IEEE-39 power system. Results show that the XGBoost algorithm has better performance than other machine learning models according to two evaluation metrics: R squared value and mean absolute percentage error value, and has the fastest computation speed, which can meet the demand of online application. Meanwhile, the XGBoost algorithm is proved to be robust when the data errors and data missing happen. And data supplement can be taken for the samples with large prediction deviation to update the model, thus making the performance of the model more stable.
|
Received: 03 March 2019
Published: 05 March 2020
|
|
Corresponding Authors:
Hui-fang WANG
E-mail: huifangwang@zju.edu.cn
|
采用极限梯度提升算法的电力系统电压稳定裕度预测
将极限梯度提升树(XGBoost)算法应用于电力系统电压稳定评估问题. 根据电压稳定问题特点,提出能够反映电力系统运行状态的特征集;把电压稳定裕度绝对值作为映射目标,并介绍生成样本集的方法. 在介绍XGBoost算法基本原理的基础上,研究该算法的技术细节. 在IEEE-39节点系统上进行验证,结果表明,XGBoost算法在R方值和平均绝对百分误差2项回归指标上均优于其他几类机器学习算法,且模型的计算速度最快,可以满足在线应用要求. 同时,XGBoost算法具有良好的数值错误和数值缺失容错性,并可以针对预测偏差较大的样本进行数据补充,实现模型的更新,使得模型表现趋于稳定.
关键词:
电力系统,
电压稳定性,
机器学习,
人工智能,
极限梯度提升树(XGBoost)算法
|
|
[1] |
王锡凡. 现代电力系统分析[M]. 北京: 科学出版社, 2003.
|
|
|
[2] |
RODRIGUES A B, PRADA R B, SILVA M D G D Voltage stability probabilistic assessment in composite systems: modeling unsolvability and controllability loss[J]. IEEE Transactions on Power Systems, 2010, 25 (3): 1575- 1588
doi: 10.1109/TPWRS.2009.2039234
|
|
|
[3] |
AJJARAPU V, CHRISTY C The continuation power flow: a tool for steady state voltage stability analysis[J]. IEEE Transactions on Power Systems, 1992, 7 (1): 416- 423
doi: 10.1109/59.141737
|
|
|
[4] |
杨滢, 叶琳, 倪秋龙 基于PSS/E的浙江电网静态电压稳定性分析[J]. 浙江电力, 2009, 28 (6): 9- 11 YANG Ying, YE Lin, NI Qiu-long Analysis of static voltage stability of Zhejiang electric grid based on PSS/E[J]. Zhejiang Electric Power, 2009, 28 (6): 9- 11
doi: 10.3969/j.issn.1007-1881.2009.06.003
|
|
|
[5] |
吴杰康, 邓松, 梁志武, 等 基于模糊神经网络决策树的电压稳定性评估[J]. 电网技术, 2007, 32 (14): 25- 30 WU Jie-kang, DENG Song, LIANG Zhi-wu, et al Evaluation of power system voltage stability based on fuzzy neural network decision tree[J]. Power System Technology, 2007, 32 (14): 25- 30
|
|
|
[6] |
王皓, 孙宏斌, 张伯明 基于混合互信息的特征选择方法及其在静态电压稳定评估中的应用[J]. 中国电机工程学报, 2006, 26 (7): 77- 81 WANG Hao, SUN Hong-bin, ZHANG Bo-ming Hybrid mutual information based feature selection method as appied to static voltage stability assessment in power systems[J]. Proceedings of the CSEE, 2006, 26 (7): 77- 81
doi: 10.3321/j.issn:0258-8013.2006.07.015
|
|
|
[7] |
FAN Y, LIU S, QIN L, et al A novel online estimation scheme for static voltage stability margin based on relationships exploration in a large data set[J]. IEEE Transactions on Power Systems, 2015, 30 (3): 1380- 1393
doi: 10.1109/TPWRS.2014.2349531
|
|
|
[8] |
DEVARAJ D, ROSELYN J P On-line voltage stability assessment using radial basis function network model with reduced input features[J]. International Journal of Electrical Power and Energy Systems, 2011, 33 (9): 1550- 1555
|
|
|
[9] |
崔峰, 齐占庆, 姜萌 基于模糊神经网络的电力系统电压稳定评估[J]. 电力系统保护与控制, 2009, 37 (11): 40- 44 CUI Feng, QI Zhan-qing, JIANG Meng Fuzzy neural network based voltage stability evaluation of power systems[J]. Power System Protection and Control, 2009, 37 (11): 40- 44
doi: 10.3969/j.issn.1674-3415.2009.11.010
|
|
|
[10] |
刘昇, 徐政, 华文 用于在线预测静态电压稳定性的SIPSS-Lasso-BP网络[J]. 中国电机工程学报, 2014, (34): 6032- 6041 LIU Sheng, XU Zheng, HUA Wen A SIPSS-Lasso-BP network for online forecasting static voltage stability[J]. Proceedings of the CSEE, 2014, (34): 6032- 6041
|
|
|
[11] |
ZHOU D Q, ANNAKKAGE U D, RAJAPAKSE A D Online monitoring of voltage stability margin using an artificial neural network[J]. IEEE Transactions on Power Systems, 2010, 25 (3): 1566- 1574
doi: 10.1109/TPWRS.2009.2038059
|
|
|
[12] |
FAN Y, LI X, ZHANG P Real-time static voltage stability assessment in large-scale power systems based on maximum-relevance minimum-redundancy ensemble approach[J]. IEEE Access, 2017, 5: 27281- 27291
doi: 10.1109/ACCESS.2017.2758819
|
|
|
[13] |
MALBASA V, ZHENG C, CHEN P C, et al Voltage stability prediction using active machine learning[J]. IEEE Transactions on Smart Grid, 2017, 8 (6): 3117- 3124
doi: 10.1109/TSG.2017.2693394
|
|
|
[14] |
CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system [C] // Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: SIGKDD. San Francisco: ACM, 2016: 785-794.
|
|
|
[15] |
WANG H, ZHANG C, LIN D et al An artificial intelligence-based method for evaluating power grid node importance using network embedding and support vector regression[J]. Frontiers of Information Technology and Electronic Engineering, 2019, 20 (6): 816- 828
doi: 10.1631/FITEE.1800146
|
|
|
[16] |
ZIMMERMAN, R D, MURILLO-SANCHEZ, C. E., THOMAS, R. J Matpower: steady-state operations, planning, and analysis tools for power systems research and education[J]. IEEE Transactions on Power Systems, 2011, 26 (1): 12- 19
doi: 10.1109/TPWRS.2010.2051168
|
|
|
[17] |
PEDREGOSA F, GRAMFORT A, MICHEL V, et al Scikit-learn: machine learning in python[J]. Journal of Machine Learning Research, 2016, 12 (10): 2825- 2830
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|