Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Object counting based on regularized risk minimization
WU Peng-zhou, YU Hui-min, ZENG Xiong
Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1608KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Current studies of object counting commonly ignore the spatial information of objects and encounter difficulties when dealing with high density object groups. An object counting approach was presented which estimated a density function for every input image, whose integral over any image region gives the count within that region. A parametric model of density function was built by mathematical derivation. The conditions that feature vectors should satisfy and the effects of image segmentation were analyzed. The parameters in the model of density function were estimated by the principle of regularized risk minimization, and the density function empirical risk minimization can be boiled down to a linear program. Experimental results show that the method can accurately estimate the object counts for testing images with only a few training images. For high density object groups, the approach also gives counts, not only density levels.



Published: 04 August 2014
CLC:  TN 911  
  TP 391  
Cite this article:

WU Peng-zhou, YU Hui-min, ZENG Xiong. Object counting based on regularized risk minimization. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(7): 1226-1233.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.07.012     OR     http://www.zjujournals.com/eng/Y2014/V48/I7/1226


基于正则化风险最小化的目标计数

针对现有研究对目标空间信息的普遍忽视及其对高密度群体精确计数的困难,提出对输入图像估计一个密度函数.通过该函数在任意图像区域上的积分得出该区域中的目标个数.经过数学推导,得到密度函数的参数化模型,分析特征向量需要满足的条件以及加入图像分割对结果的影响. 由正则化风险最小化原理求取密度函数模型的参数,将密度函数的经验风险最小化问题简化为一个线性规划问题. 实验表明,该方法只需少量图像进行训练, 就可以准确地估计测试图像的目标数目. 对于高密度群体,该方法能够给出目标计数, 而不仅是密度等级估计.

1] LIN S F, CHEN J Y, CHAO H X. Estimation of number of people in crowded scenes using perspective transformation [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans,  2001, 31(6): 645-654.
[2] DESCOMBES X, MINLOS R, ZHIZHINA E. Object extraction using a stochastic birth-and-death dynamics in continuum [J]. Journal of Mathematical Imaging and Vision, 2009, 33(3): 347-359.
[3] DAVIES A C, YIN J H, VELASTIN S A. Crowd monitoring using image processing [J]. Electronics and Communication Engineering Journal, 1995, 7(1):37-47.
[4] PARAGIOS N, RAMESH V. A MRF-based approach for real-time subway monitoring [C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2001: I-1034-I-1040.
[5] MA R, LI L, HUANG W, et al. On pixel count based crowd density estimation for visual surveillance [C]∥Proceedings of IEEE Conference on Cybernetics and Intelligent System. [S.l.]: IEEE, 2004: 170-173.
[6] VELASTIN S A, YIN J H, DAVIES A C, et al. Automated measurement of crowd density and motion using image processing [C]∥Proceedings of IET International Conference on Road Traffic Monitoring and Control. [S.l.]: IET, 1994: 127-132.
[7] REGAZZONI C S, TESEI A. Distributed data fusion for real-time crowding estimation [J]. Signal Processing, 1996, 53(1): 47-63.
[8] CHO S Y, CHOW T W S, LEUNG C T. A neural-based crowd estimation by hybrid global learning algorithm [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 1999, 29(4): 535-541.
[9] MARANA A, DA COSTA L, LOTUFO R, et al. On the efficacy of texture analysis for crowd monitoring [C]∥Proceedings of IEEE International Symposium on Computer Graphics, Image Processing, and Vision. [S.l.]: IEEE, 1998: 354-361.
[10] LI W, WU X, MATSUMOTO K, et al. Crowd density estimation: an improved approach [C]∥Proceedings of IEEE International Conference on Signal Processing. [S.l.]: IEEE, 2010: 1213-1216.
[11] VERONA V V, MARANA A N. Wavelet packet analysis for crowd density estimation [C]∥Proceedings of the IASTED International Symposia on Applied Informatics. Innsbruck: [s.n.], 2001.
[12] RAHMALAN H, NIXON M, CARTER J. On crowd density estimation for surveillance [C]∥Proceedings of The Institution of Engineering and Technology Conference on Crime and Security. [S.l.]: IET, 2006: 540-545.
[13] WU X Y, LIANG G Y, LEE K K, et al. Crowd density estimation using texture analysis and learning [C]∥ Proceedings of IEEE International Conference on Robotics and Biomimetics. [S.l.]: IEEE, 2006: 214-219.
[14] CHAN A B, LIANG Z, VASCONCELOS N. Privacy preserving crowd monitoring: counting people without people models or tracking [C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2008: 17.
[15] CHAN A B, VASCONCELOS N. Bayesian Poisson regression for crowd counting [C]∥Proceedings of IEEE International Conference on Computer Vision. [S.l.]: IEEE, 2009: 545-551.
[16] RYAN D, DENMAN S, FOOKES C, et al. Crowd counting using multiple local features [C]∥Proceedings of IEEE Conference on Digital Image Computing: Techniques and Applications. [S.l.]: IEEE, 2009: 81-88.
[17] SCHREIBER D, RAUTER M. A CPU-GPU hybrid people counting system for real-world airport scenarios using arbitrary oblique view cameras [C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops. [S.l.]: IEEE, 2012: 83-88.
[18] MURPHY K P. Machine learning: a probabilistic perspective [M]. [S.l.]: MIT, 2012: 204-207.
[19] LEMPITSKY V, ZISSERMAN A. Learning to count objects in images [C]∥Proceedings of Neural Information Processing Systems (NIPS). Vancouver: Curran Associates Inc,2010.
[20] BENTLEY J L. Programming pearls: perspective on performance [J]. Communications of the ACM, 1984, 27(11): 1087-1092.
[21] BENTLEY J L. Programming pearls: algorithm design techniques [J]. Communications of the ACM, 1984, 27(9): 865-871.
[22] SRA S, NOWOZIN S, WRIGHT S J. Optimization for machine learning [M]. [S.l.]: MIT, 2012: 185-196.
[23] LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110. 

[1] WU Chen-xi, ZHANG Min, WANG Ke-ren. Broadband underdetermined direction of arrival estimation based on two level nested array[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 1016-1023.
[2] XIE Luo feng, XU Hui ning, HUANG Qin yuan, ZHAO Yue, YIN Guo fu. Application of DTCWPT and NCA-LSSVM to inspect internal defects of magnetic tile[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 184-191.
[3] WANG Zhi, ZHU Shi qiang, BU Yan, GUO Zhen min. Stereo matching algorithm using improved guided filtering[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(12): 2262-2269.
[4] YU Hui-min, ZENG Xiong. Visual tracking combined with ranking vector SVM[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(6): 1015-1021.
[5] CHEN Kuo, FENG Hua-jun, XU Zhi-hai, LI Qi, CHEN Yue-ting. Fast detail-preserving exposure fusion[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(6): 1048-1054.
[6] JIANG Shen-yu, CHEN Kuo, XU Zhi-hai, FENG Hua-jun, LI Qi, CHEN Yue-ting. Multi-exposure image fusion based on well-exposedness assessment[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(3): 470-475.
[7] ZHU Zhu, LIU Ji-lin. Real-time Markov random field based ground segmentation of 3D Lidar data[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(3): 464-469.
[8] TONG Ji-jun, ZHANG Guang-lei, CAI Qiang, JIAN Jin-ming, GUO Xi-shan. Application of threshold stochastic resonance in low concentration gas detecting[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(1): 15-19.
[9] LI Jiang, ZHAO Ya-qiong, BAO Ye-hua. Voice processing technique for patients with stroke based on chao theory and surrogate data analysis[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(1): 36-41.
[10] PAN Neng-jie, YU Hui-min. Edge-enhanced maximally stable color regions[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(7): 1241-1247.
[11] YUE Ke-qiang, SUN Ling-ling, YOU Bin, LOU Li-heng. Parallelizable identification anti-collision algorithm based on under-determined blind separation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(5): 865-870.
[12] XIANG Nan, ZHAO Hang-fang, GONG Xian-yi. Improper complex-domain state-space filtering[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(4): 727-733.
[13] YANG Li, ZHU Zhu, LIU Ji-lin. Bird’s-eye panoramic view algorithm for vehicle’s embedded system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(2): 292-296.
[14] LIU Feng-xia, PAN Xiang,GONG Xian-yi. Matched-field three-dimensional source localization
using spiral line array
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(1): 62-69.
[15] LIU Zhi-kun, LIU Zhong, FU Xue-zhi, NING Xiao-ling. Modified variable step-size adaptive filtering and
Eckart weighted denoising algorithm
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(6): 1014-1020.