Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Mechanical and Energy Engineering     
Stereo matching algorithm using improved guided filtering
WANG Zhi, ZHU Shi qiang, BU Yan, GUO Zhen min
1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China;
2. Hangzhou Automation Technology Institute Co. Ltd, Hangzhou 310030, China
Download:   PDF(2230KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An improved guided filter-based stereo matching algorithm was proposed to solve the problem of low accuracy and sensitivity to environmental change. The algorithm used the improved guiding filter to preprocess the raw images; the gradient of the preprocessed images was combined with the Census transform in the matching cost computation. Furthermore, an adaptive cross-based support window was constructed dependeding on the color similarity. The improved guided filter was adopted as the cost aggregation method. Accurate disparity maps were obtained after disparity refinement, which could achieve good performance in textureless regions. The experiments on the Middlebury and KITTI benchmark demonstrate that the proposed algorithm outperforms other filter-based methods, which has better robustness and can be used in outdoor applications. In addition, the computational complexity of the proposed method is independent on the window size, which has good real-time performance.



Published: 08 December 2016
CLC:  TN 911.73  
Cite this article:

WANG Zhi, ZHU Shi qiang, BU Yan, GUO Zhen min. Stereo matching algorithm using improved guided filtering. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(12): 2262-2269.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.12.003     OR     http://www.zjujournals.com/eng/Y2016/V50/I12/2262


改进导向滤波器立体匹配算法

针对基于滤波器的立体匹配算法精度不高以及易受外界环境影响的问题,提出基于改进导向滤波器的立体匹配算法.在传统梯度向量中加入经过预处理后图像的梯度信息,结合Census变换计算匹配代价.构建自适应窗口,采用改进的导向滤波器聚合匹配代价|经过视差处理获得高精度的视差图,在低纹理区域能取得较好的匹配结果.实验结果表明,相比其他基于滤波器的立体匹配算法,该算法在Middlebury和KITTI平台上的测试结果具有更高的精度|对光照失真条件具有更好的鲁棒性,能应用于室外场合|计算复杂度与匹配窗口大小无关,具有较好的实时性.

[1] GURRIERI L E, DUBOIS E. Depth consistency and vertical disparities in stereoscopic panoramas [J]. Journal of Electronic Imaging, 2014, 23(1): 114.
[2] KUMAR S,KUMAR S,SUKAVANAM N,et al. Human visual system and segmentbased disparity estimation [J]. AEUInternational Journal of Electronics and Communications, 2013, 67(5): 372-381.
[3] SCHARSTEIN D, SZELISKI R. A taxonomy and evaluation of dense twoframe stereo correspondence algorithms [J]. International Journal of Computer Vision, 2002, 47(1): 7-42.
[4] 赖小波,朱世强.基于互相关信息的非参数变换立体匹配算法[J].浙江大学学报:工学版,2011,45(9):1636-1642.
LAI Xiaobo, ZHU Shiqiang. Mutual information based nonparametric transform stereo matching algorithm [J]. Journal of Zhejiang University: Engineering Science, 2011, 45(9): 1636-1642.
[5] 祝世平,杨柳.基于自适应分水岭的图割的立体匹配算法[J].光学学报,2013,33(3): 221-229.
ZHU Shiping, YANG Liu. Stereo matching algorithm with graph cuts based on adaptive watershed [J]. Acta Optical Sinica, 2013, 33(3): 221-229.
[6] TOMBARI F, MATTOCCIA S, DI S L, et al. Classification and evaluation of cost aggregation methods for stereo correspondence [C] ∥ IEEE Conference on Computer Vision and Pattern Recognition. Anchorage: IEEE, 2008: 18.
[7] HOSNI A, BLEYER M, GELAUTZ M, et al. Local stereo matching using geodesic support weights [C] ∥ IEEE International Conference on Image Processing.Vienna: IEEE, 2009: 2093-2096.
[8] VEKSLER O. Fast variable window for stereo correspondence using integral images [C] ∥ IEEE Conference on Computer Vision and Pattern Recognition. Madison: IEEE, 2003: 556-561.
[9] ZHANG K, LU J, LAFRUIT G. Crossbased local stereo matching using orthogonal integral images [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(7): 1073-1079.
[10] YANG Y Y, WANG H B, LIU B. A new stereo matching algorithm based on adaptive window [C] ∥ Proceedings of IEEE International Conference on Systems and Informatics. Yantai: IEEE, 2012: 1815-1819.
[11] YOON K J, KWEON I S. Adaptive supportweight approach for correspondence search [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2006, 28(4): 650-656.
[12] ZHU S, CAO D H, WU Y B, et al. Edgeaware dynamic programming based cost aggregation for robust stereo matching [J]. Journal of Electronic Imaging, 2015, 24(4): 17.
[13] RHEMANN C, HOSNI A, BLEYER M, et al. Fast costvolume filtering for visual correspondence and beyond [C] ∥ IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2011: 3017-3024.
[14] He K, SUN J, TANG X. Guided image filtering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6), 1397-1409.
[15] HIRSCHMULLER H, SCHARSTEIN D. Evaluation of stereo matching costs on images with radiometric differences [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(9): 1582-1599.
[16] MEI X, SUN X, ZHOU M C, et al. On building an accurate stereo matching system on graphics hardware [C] ∥ Proceedings of IEEE International Conference on Computer Vision Workshops. Barcelona: IEEE, 2011: 467-474.
[17] MEI X, SUN X, DONG W, et al. segmenttree based cost aggregation for stereo matching [C] ∥ IEEE Conference on Computer Vision and Pattern Recognition. Portland: IEEE, 2013: 313-320.
[18] HAM B, MIN D, OH C, et al. probabilitybased rendering for view synthesis [J]. IEEE Transactions on Image Processing, 2014, 23(2): 870-884.
[19] NGUYEN V D, NGUYEN D D, SANG J L, et al. Local density encoding for robust stereo matching [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(12): 2049-2062.
[20] HIRSCHMULLER H, et al. Stereo processing by semiglobal matching and mutual information [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2): 328-341.
[21] GEIGER A, ROSER M, URTASUN R. Efficient largescale stereo matching [C] ∥ Asian Conference on Computer Vision. New Zealand: [s. n.], 2010: 25-38.
[22] ZHANG K, FANG Y, MIN D, et al. Crossscale cost aggregation for stereo matching [C] ∥ IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 1590-1597.

[1] ZHU Zhu, LIU Ji-lin. Real-time Markov random field based ground segmentation of 3D Lidar data[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(3): 464-469.
[2] WU Yi-quan, ZHANG Xiao-jie, WU Shi-hua, ZHANG Sheng-wei. Two-dimensional minimum error thresholding based on chaotic
particle swarm optimization or decomposition
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(7): 1198-1205.
[3] MAO Feng, ZHANG Shu-you, SHI Yue-ding. Shape detection for molding products based on
multi-resolution contour matching
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(6): 1013-1020.
[4] GE Peng, LI Qi, FENG Hua-jun, XU Zhi-hai, CHEN Yue-ting. Sub-pixel motion detection by joint transform correlator
based on bicubic spline interpolation
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(11): 2198-2202.
[5] XIE Jiang-Jun, HOU Di-Bei, HUANG Beng-Cha, ZHANG Guang-Xin, ZHOU Ze-Kuai. Fast single parameter level set segmentation based on
semi-implicit schemes
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(8): 1496-1501.
[6] MAO Feng, ZHANG Shu-Wei, HUANG Chang-Lin. Inspection of foreign substances in mould using image scattergrams and multi|resolution analysis[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(10): 1749-1756.
[7] LING Bei, GU Wei-Kang, DU Xin. Error concealment for whole frame losses in H264[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(09): 1732-1738.