Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (3): 616-624    DOI: 10.3785/j.issn.1008-973X.2023.03.020
    
Qualitative analysis of critical mode for voltage stability in multi-infeed DC system
Guan-zhong WANG1(),Yi-xin WANG1,Yang-qing DAN2,Ying-jing HE2,Hao WU1
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
2. Economic Research Institute of State Grid Zhejiang Electric Power Company, Hangzhou 310008, China
Download: HTML     PDF(1332KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The derivation method of the Jacobian matrix in voltage stability analysis of AC/DC power systems was systematically elucidated from the perspective of matrix elimination. The sign distribution property of the dominant modal sensitivity of the AC-side Jacobian matrix was utilized to qualitatively analyze the impact of different control modes of LCC-HVDC on the system voltage stability margin. Firstly, the Jacobian matrix derivation process under multiple LCC-HVDC control modes was uniformly expressed as the matrix elimination process of the fourth-order Jacobian matrix. Secondly, the complete proof of the sign distribution property of the dominant modal sensitivity of the Jacobian matrix in the AC Thevenin equivalent circuit was supplemented, based on which the change trend of the system stability margin at the receiving end AC system with different control modes was qualitatively analyzed. Finally, the effectiveness of the proposed method was verified by a Cigre standard system model.



Key wordsmulti-infeed DC system      static voltage stability      Jacobian matrix      control mode      sensitivity     
Received: 02 March 2022      Published: 31 March 2023
CLC:  TU 111  
Fund:  国网浙江电力科技资助项目(2021ZK10)
Cite this article:

Guan-zhong WANG,Yi-xin WANG,Yang-qing DAN,Ying-jing HE,Hao WU. Qualitative analysis of critical mode for voltage stability in multi-infeed DC system. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 616-624.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.03.020     OR     https://www.zjujournals.com/eng/Y2023/V57/I3/616


直流多馈入系统电压稳定主导模式定性分析

从矩阵消元的视角系统阐述在交直流系统电压稳定分析中雅克比矩阵的推导方法. 利用交流侧雅克比矩阵主导模态灵敏度的符号分布性质,定性分析直流不同控制方式对系统电压稳定裕度的影响规律. 将多种LCC-HVDC控制方式下的雅克比矩阵推导过程统一表示为对四阶雅克比矩阵的矩阵消元过程,从矩阵分析的角度统一LCC-HVDC电压稳定建模过程. 将交流戴维南等值电路雅克比矩阵主导模态的灵敏度具有符号分布性质的证明补充完整,据此定性分析不同控制方式的直流系统接入受端交流网络后系统稳定裕度的变化趋势. 通过Cigre标准系统算例验证所提方法的有效性.


关键词: 直流多馈入系统,  静态电压稳定性,  雅克比矩阵,  控制方式,  灵敏度 
Fig.1 Quasi-steady-state model of single-infeed LCC-HVDC system
Fig.2 Multi-infeed HVDC system
Fig.3 Illustrative diagram of proposed method
控制方式 $ {J'_{{P_d}U}} $ $ {J'_{{Q_d}U}} $
CP-CEA 0 0.4830
CC-CEA 1.1032 ?0.3645
CP-CV 0 ?2.3664
CC-CV 0 ?2.3664
Tab.1 Voltage sensitivity calculation results of CIGRE benchmark DC test system in four control modes
Fig.4 Relationship between singularity of Jacobian matrix and short circuit ratio
Fig.5 AC voltage response of LCC-HVDC infeed system with different control mode
Fig.6 Distribution of elements in Jacobian matrix
Fig.7 Time domain simulation of two infeed system
[1]   程浩忠, 李隽, 吴耀武, 等 考虑高比例可再生能源的交直流输电网规划挑战与展望[J]. 电力系统自动化, 2017, 41 (9): 19- 27
CHENG Hao-zhong, LI Jun, WU Yao-wu, et al Challenges and prospects for AC/DC transmission expansion planning considering high proportion of renewable energy[J]. Automation of Electric Power System, 2017, 41 (9): 19- 27
[2]   汤涌. 电力系统电压稳定性分析[M]. 北京: 科学出版社, 2011.
[3]   WANG Y, PORDANJANI I R, LI W, et al Voltage stability monitoring based on the concept of coupled single-port circuit[J]. IEEE Transactions on Power Systems, 2011, 26 (4): 2154- 2163
doi: 10.1109/TPWRS.2011.2154366
[4]   WU D, WOLTER F E, WANG B, et al Searching for the shortest path to voltage instability boundary: from Euclidean space to algebraic manifold[J]. International Journal of Electrical Power and Energy Systems, 2021, 131: 107127
doi: 10.1016/j.ijepes.2021.107127
[5]   SIMPSON-PORCO J W, DÖRFLER F, BULLO F Voltage stabilization in microgrids via quadratic droop control[J]. IEEE Transactions on Automatic Control, 2017, 62 (3): 1239- 1253
doi: 10.1109/TAC.2016.2585094
[6]   GUPTA N, TIWARI B N, BELLUCCI S Intrinsic geometric analysis of the network reliability and voltage stability[J]. International Journal of Electrical Power and Energy Systems, 2013, 44 (1): 872- 879
doi: 10.1016/j.ijepes.2012.08.032
[7]   SIMPSON-PORCO J W, DÖRFLER F, BULLO F Voltage collapse in complex power grids[J]. Nature communications, 2016, 7: 10790
doi: 10.1038/ncomms10790
[8]   BEGOVIC M M, PHADKE A G Control of voltage stability using sensitivity analysis[J]. IEEE Transactions on Power Systems, 1992, 7 (1): 114- 123
doi: 10.1109/59.141694
[9]   LEE D H A Voltage stability assessment using equivalent nodal analysis[J]. IEEE Transactions on Power Systems, 2016, 31 (1): 454- 463
doi: 10.1109/TPWRS.2015.2402436
[10]   XIAO H, LI Y, SUN X Strength evaluation of multi-infeed LCC-HVDC systems based on the virtual impedance concept[J]. IEEE Transactions on Power Systems, 2020, 35 (4): 2863- 2875
doi: 10.1109/TPWRS.2019.2960298
[11]   郭小颖, 唐俊杰, 舒铜, 等 基于改进模态分析法的柔性多端交直流混联系统静态电压稳定性评估[J]. 电工技术学报, 2021, 36 (17): 3741- 3752
GUO Xiao-ying, TANG Jun-jie, SHU Tong, et al Static voltage stability assessment on hybrid alternating current/voltage source converter-multiple terminal direct current system using improved modal analysis[J]. Transactions of China Electrotechnical Society, 2021, 36 (17): 3741- 3752
doi: 10.19595/j.cnki.1000-6753.tces.201031
[12]   XU W, PORDANJANI I R, WANG Y, et al A network decoupling transform for phasor data based voltage stability analysis and monitoring[J]. IEEE Transactions on Smart Grid, 2012, 3 (1): 261- 270
doi: 10.1109/TSG.2011.2163175
[13]   KESSEL P, GLAVITSCH H Estimating the voltage stability of a power system[J]. IEEE Transactions on Power Delivery, 1986, 1 (3): 346- 354
doi: 10.1109/TPWRD.1986.4308013
[14]   LOF P A, ANDERSSON G, HILL D J Voltage stability indices for stressed power systems[J]. IEEE Transactions on Power Systems, 1993, 8 (1): 326- 335
doi: 10.1109/59.221224
[15]   章枫, 辛焕海, 徐谦, 等 直流多馈入系统的广义短路比: 影响因素分析[J]. 中国电机工程学报, 2017, 37 (18): 5303- 5312+S11
ZHANG Feng, XIN Huan-hai, XU Qian, et al Generalized short circuit ratio for multi-infeed DC systems: influence factors[J]. Proceedings of the CSEE, 2017, 37 (18): 5303- 5312+S11
[16]   LI D, SUN M, FU Y A general steady-state voltage stability analysis for hybrid multi-infeed HVDC systems[J]. IEEE Transactions on Power Delivery, 2021, 36 (3): 1302- 1312
doi: 10.1109/TPWRD.2020.3006027
[17]   辛焕海, 章枫, 于洋, 等 多馈入直流系统广义短路比: 定义与理论分析[J]. 中国电机工程学报, 2016, 36 (3): 633- 647
XIN Huan-hai, ZHANG Feng, YU Yang, et al Generalized short circuit ratio for multi-infeed DC system: definition and theoretical analysis[J]. Proceedings of the CSEE, 2016, 36 (3): 633- 647
[18]   XIAO H, LI Y, SHI D, et al Evaluation of strength measure for static voltage stability analysis of hybrid multi-infeed DC systems[J]. IEEE Transactions on Power Delivery, 2019, 34 (3): 879- 890
doi: 10.1109/TPWRD.2019.2901831
[19]   LEE D H A, ANDERSSON G. An equivalent single-infeed model of multi-infeed HVDC systems for voltage and power stability analysis [J]. IEEE Transaction on Power Delivery, 2016, 31(1): 303-312.
[20]   HORN R A, JOHNSON C R. Topics in matrix analysis [M]. Cambridge: Cambridge University Press, 1991.
[21]   郭小江, 郭剑波, 王成山 考虑直流输电系统外特性影响的多直流馈入短路比实用计算方法[J]. 中国电机工程学报, 2015, 35 (9): 2143- 2151
GUO Xiao-jiang, GUO Jian-bo, WANG Cheng-shan Practical calculation method for multi-infeed short circuit ratio influenced by characteristics of external characteristics of DC system[J]. Proceedings of the CSEE, 2015, 35 (9): 2143- 2151
[22]   徐政. 交直流电力系统动态行为分析[M]. 北京: 机械工业出版社, 2004.
[23]   陈修宇. 多馈入直流系统电压相互作用及其影响[D]. 北京: 华北电力大学, 2012.
CHEN Xiu-yu. The voltage interaction in multi-infeed HVDC systems and its influence [D]. Beijing: North China Electric Power University, 2012.
[1] Xiao-hui GUO,Wei-qiang HONG,Guo-qing ZHENG,Jing-yi WANG,Guo-peng TANG,Jin-yang YANG,Chao-qiang ZHUO,Yao-hua XU,Yu-nong ZHAO,Hong-wei ZHANG. High sensitivity flexible tactile sensor with hierarchical tilted micro-pillar structure[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1079-1087, 1126.
[2] Yu YANG,Shi-min MAO,Di WANG,Wei CAO,Xuan-qiu LI,Cun-bo LIU. Completing process method for spiral bevel gear and sensitivity analysis of machine tool motion error[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 879-889.
[3] Ying LI,Guan-xiong WANG,Wei YAN,Ying-ge ZHAO,Chong-lei MA. Improved sparse grid collocation method for uncertainty quantification of EIT conductivity distribution[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 613-621.
[4] Jia-yi SHEN,Meng KU,Li-zhong WANG. Stability analyses of submarine slopes based on shear band propagation method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1299-1307.
[5] Yang XUE,Yi-ping WU,Fa-sheng MIAO,Lin-wei LI. Back analysis of shear strength parameters of sliding surface by using combination method of random field and Bayes theory[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1118-1127.
[6] Xiu-fen ZHANG,Yun-fei GAO. Multi-dimensional hierarchical remanufacturability evaluation method for end-of-life mechanical parts[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 954-962.
[7] Teng-yi HUANG,Jin ZHOU,Yan XU,Fan-xu MENG. Modeling of MR damper based on multi-field coupling analysis and influence of structural parameters[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2001-2008.
[8] Chen CHENG,Xiao-liang WANG. Thermal sensitivity factors analysis of stratospheric airships[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 202-212.
[9] Chang-biao XU,Zhou LI. A super-wide-range parameter chaotic system with coexisting chaotic attractor[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1552-1562.
[10] Feng CHENG,Dong ZHANG,Shuo TANG. Aerodynamics/propulsion coupled modeling and analysis of hypersonic vehicle within wide speed range[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 1006-1018.
[11] Yun-feng ZHOU,Yong-chao ZHOU,Chun-hua ZHENG,Xian-ming WENG,Xiao-yu MA,Jing-qing LIU. Sensitivity analysis of parameters of storm water management model with Sobol method[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 347-354.
[12] Jin ZHOU,Tian-yu GAO,Yi CHEN,Hong-hao XI. Model updating of dual-rotor decanter centrifuge with dynamic test[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 241-249.
[13] REN Song, OUYANG Xun, WU Jian-xun, CHEN Fan, WANG Liang, CHEN Jie. Elastic-swelling analytical model of anhydrite rock considering time-dependent effect[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 896-905.
[14] BAO Teng-fei, LI Jian-ming, ZHAO Jin-lei. Strain transfer analysis between embedded plastic optical fibers and concretes[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2342-2348.
[15] LUO Yue, YE Shu-jun, WU Ji-chun, ZHANG Yan-hong, JIAO Xun, WANG Han-mei. Global sensitivity analysis of parameters in land subsidence model[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 2007-2013.