Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (6): 1079-1087, 1126    DOI: 10.3785/j.issn.1008-973X.2022.06.004
    
High sensitivity flexible tactile sensor with hierarchical tilted micro-pillar structure
Xiao-hui GUO1,2(),Wei-qiang HONG1,Guo-qing ZHENG3,Jing-yi WANG3,Guo-peng TANG1,Jin-yang YANG1,Chao-qiang ZHUO1,Yao-hua XU1,Yu-nong ZHAO4,Hong-wei ZHANG1,*()
1. School of Electronic Information Engineering, Anhui University, Hefei 230601, China
2. Anhui Province Key Laboratory of Target Recognition and Feature Extraction, Lu’an 237010, China
3. East China Institute of Optoelectronic Integrated Devices, Suzhou 215163, China
4. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Download: HTML     PDF(3894KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A flexible tactile sensor was proposed based on the hierarchical titled micro-pillar structure, in order to meet the precise tactile sensing application requirements of capacitive flexible tactile sensors in wearable electronic devices, intelligent robots and other fields. When the sensor was subjected to external pressure, the titled micro-pillar was deformed in stages, resulting in an increase in the capacitance of the sensor. Combined with simulation and experiment, the influence of sensor structure characteristics on its sensitivity were studied, the relationship between sensor signal output and loading pressure designed with different structural parameters was revealed, and the structure of tactile sensor was optimized. The experimental data showed that the sensor had good sensitivity (0.44 kPa?1) and low detection limit (2.6 Pa), the response time was 40 ms, the maximum hysteresis error was 6.7% The sensor exhibits excellent stability and repeatability during 2 400 cycles of loading/unloading, and it can be extended to "skin" arrays of different sizes and shapes, the precise perception of the manipulator and the monitoring of motion postures of the human body were realized.



Key wordselectronic skin      flexible tactile sensor      high sensitivity      rapid response      hierarchical tilted micro-pillar     
Received: 02 March 2022      Published: 30 June 2022
CLC:  TP 212  
Fund:  国家自然科学基金青年基金项目(61901005);安徽省自然科学基金青年基金项目(1908085QF261);中国博士后科学基金资助项目(2021M690994);安徽省博士后研究人员科研活动经费资助项目(2021B539);2021年度安徽省中央引导地方科技发展资金专项项目(202107d08050012)
Corresponding Authors: Hong-wei ZHANG     E-mail: guoxh@ahu.edu.cn;hwzhang@ahu.edu.cn
Cite this article:

Xiao-hui GUO,Wei-qiang HONG,Guo-qing ZHENG,Jing-yi WANG,Guo-peng TANG,Jin-yang YANG,Chao-qiang ZHUO,Yao-hua XU,Yu-nong ZHAO,Hong-wei ZHANG. High sensitivity flexible tactile sensor with hierarchical tilted micro-pillar structure. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1079-1087, 1126.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.06.004     OR     https://www.zjujournals.com/eng/Y2022/V56/I6/1079


分级倾斜微圆柱结构的高灵敏度柔性触觉传感器

为了满足电容式柔性触觉传感器在可穿戴电子设备、智能机器人、人机交互等领域的精准触觉感知应用需求,基于分级倾斜微圆柱结构提出柔性触觉传感器.传感器在受到外界压强作用时,引起倾斜微圆柱分级变形,导致传感器电容增大.结合仿真和实验研究传感器结构特征对其灵敏度的影响规律,揭示不同结构参数设计的传感器信号输出与加载压强间的关系,优化触觉传感器结构.实验数据表明,所提传感器具有良好的灵敏度(0.44 kPa?1)和低检测下限(2.6 Pa),响应时间为40 ms,最大迟滞误差为6.7%,在2 400次循环加/卸载过程中展现了优异的重复性和稳定性.该传感器可以拓展为不同尺寸和形状的“皮肤”阵列,实现了机械手精准感知和人体运动姿态监测.


关键词: 电子皮肤,  柔性触觉传感器,  高灵敏度,  快速响应,  分级倾斜微圆柱 
Fig.1 Schematic diagram of structure and composition of 5×5 hierarchical tilted micro-pillar structure unit sensor
Fig.2 Stress distribution simulation of different micro-pillar structures under different pressures
Fig.3 Schematic diagram of preparation process of sensor array
Fig.4 Optimization of structural feature parameters of capacitive tactile sensor
Fig.5 Characteristic testing of sensors
Fig.6 Stability test of sensor during 5 kPa pressure loading/unloading
Fig.7 Capacitive flexible tactile sensor performance comparison
Fig.8 Response signal curve when manipulator grasps objects with different hardness
Fig.9 Experiment of pressure distribution sensing with 8×8 sensor array
Fig.10 Finger touch manipulator integrated sensor experiment
Fig.11 Sensors used in various monitoring applications of different human motion states with proposed sensor
[1]   WANG Y, CHEN Z, MEI D, et al Highly sensitive and flexible tactile sensor with truncated pyramid-shaped porous graphene/silicone rubber composites for human motion detection[J]. Composites Science and Technology, 2022, 217: 109078
doi: 10.1016/j.compscitech.2021.109078
[2]   ZHOU Q, JI B, WEI Y Z, et al A bio-inspired cilia array as the dielectric layer for flexible capacitive pressure sensors with high sensitivity and a broad detection range[J]. Journal of Materials Chemistry A, 2019, 7 (48): 27334- 27346
doi: 10.1039/C9TA10489E
[3]   JI B, ZHOU Q, Wu J, et al Synergistic optimization toward the sensitivity and linearity of flexible pressure sensor via double conductive layer and porous microdome array[J]. ACS Applied Materials and Interfaces, 2020, 12 (27): 31021- 31035
doi: 10.1021/acsami.0c08910
[4]   CAI L, CHEN G, TIAN J, et al Three-dimensional printed ultrahighly sensitive bioinspired ionic skin based on submicrometer-scale structures by polymerization shrinkage[J]. Chemistry of Materials, 2021, 33 (6): 2072- 2079
doi: 10.1021/acs.chemmater.0c04581
[5]   ZHAO X F, HANG C Z, LU H L, et al A skin-like sensor for intelligent braille recognition[J]. Nano Energy, 2019, 68: 104346
[6]   XIA T, YU R, YUAN J, et al Ultrahigh sensitivity flexible pressure sensors based on 3D-printed hollow microstructures for electronic skins[J]. Advanced Materials Technologies, 2021, 6 (3): 2000984
doi: 10.1002/admt.202000984
[7]   QIU Y, TIAN Y, SUN S, et al Bioinspired, multifunctional dual-mode pressure sensors as electronic skin for decoding complex loading processes and human motions[J]. Nano Energy, 2020, 78: 105337
doi: 10.1016/j.nanoen.2020.105337
[8]   ZHAO X F, WEN X H, SUN P, et al. Spider web-like flexible tactile sensor for pressure-strain simultaneous detection [J]. ACS Applied Materials and Interfaces, 13(8): 10428-10436.
[9]   LU Y, HE Y, QIAO J, et al Highly sensitive interlocked piezoresistive sensors based on ultrathin ordered nanocone array films and their sensitivity simulation[J]. ACS Applied Materials and Interfaces, 2020, 12 (49): 55169- 55180
doi: 10.1021/acsami.0c16456
[10]   JEONG Y, GU J, BYUN J, et al Ultra-wide range pressure sensor based on a microstructured conductive nanocomposite for wearable workout monitoring[J]. Advanced Healthcare Materials, 2021, 10 (9): 2001461
doi: 10.1002/adhm.202001461
[11]   AMOLI V, KIM J S, JEE E, et al A bioinspired hydrogen bond-triggered ultrasensitive ionic mechanoreceptor skin[J]. Nature Communications, 2019, 10 (1): 4019
doi: 10.1038/s41467-019-11973-5
[12]   QU C, WANG S, LIU L, et al Bioinspired flexible volatile organic compounds sensor based on dynamic surface wrinkling with dual-signal response[J]. Small, 2019, 15 (17): 1900216
doi: 10.1002/smll.201900216
[13]   ZHAO S F, RAN W H, WANG D P, et, al 3D dielectric layer enabled highly sensitive capacitive pressure sensors for wearable electronics[J]. ACS Applied Materials and Interfaces, 2020, 12 (28): 32023- 32030
doi: 10.1021/acsami.0c09893
[14]   XIONG Y, SHEN Y, TIAN L, et al A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring[J]. Nano Energy, 2020, 70: 104436
doi: 10.1016/j.nanoen.2019.104436
[15]   TANG Z, JIA S, ZHOU C, et al 3D printing of highly sensitive and large-measurement-range flexible pressure sensors with a positive piezoresistive effect[J]. ACS Applied Materials and Interfaces, 2020, 12 (25): 28669- 28680
doi: 10.1021/acsami.0c06977
[16]   WANG C, XIA K, ZHANG M, et al An all silk-derived dual-mode E-skin for simultaneous temperature-pressure detection[J]. ACS Applied Materials and Interfaces, 2017, 45: 39484- 39492
[17]   LI X, JI D, YU B, et al Boosting piezoelectric and triboelectric effects of PVDF nanofiber through carbon-coated piezoelectric nanoparticles for highly sensitive wearable sensors[J]. Chemical Engineering Journal, 2021, 12 (426): 130345
[18]   LI L, FU X, CHEN S, et al Hydrophobic and stable MXene-polymer pressure sensors for wearable electronics[J]. ACS Applied Materials and Interfaces, 2020, 12 (13): 15362- 15369
doi: 10.1021/acsami.0c00255
[19]   LIU Y, BAO R, TAO J, et al Recent progress in tactile sensors and their applications in intelligent systems[J]. Science Bulletin, 2020, 65 (1): 70- 88
doi: 10.1016/j.scib.2019.10.021
[20]   RUTH S R A, FEIG V R, TRAN H, et al Microengineering pressure sensor active layers for improved performance[J]. Advanced Functional Materials, 2020, 30 (39): 2003491
doi: 10.1002/adfm.202003491
[21]   HWANG J, KIM Y, YANG H, et al Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor[J]. Composites Part B: Engineering, 2021, 211: 108607
doi: 10.1016/j.compositesb.2021.108607
[22]   HE F, YOU X, WANG W, et al Recent progress in flexible microstructural pressure sensors toward human-machine interaction and healthcare applications[J]. Small Methods, 2021, 5 (3): 2001041
doi: 10.1002/smtd.202001041
[23]   LI S, R LI, CHEN T, et al Highly sensitive and flexible capacitive pressure sensor enhanced by weaving of pyramidal concavities staggered in honeycomb matrix[J]. IEEE Sensors Journal, 2020, 20 (23): 14436- 14443
doi: 10.1109/JSEN.2020.3008474
[24]   RUTH S R A, BEKER L, TRAN H, et al Rational design of capacitive pressure sensors based on pyramidal microstructures for specialized monitoring of biosignals[J]. Advanced Functional Materials, 2019, 30 (29): 1903100
[25]   WAN Y, QIU Z, HONG Y, et al A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures[J]. Advanced Electronic Materials, 2018, 4 (4): 1700586
doi: 10.1002/aelm.201700586
[26]   NIU H, GAO S, YUE W, et al Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure[J]. Small, 2020, 16 (4): 1904774
doi: 10.1002/smll.201904774
[27]   KIM Y, YANG H, OH J H Simple fabrication of highly sensitive capacitive pressure sensors using a porous dielectric layer with cone-shaped patterns[J]. Materials and Design, 2020, 197: 109203
[28]   ATALAY O, ATALAY A, GAFFORD J, et al A highly sensitive capacitive-based soft pressure sensor based on a conductive fabric and a microporous dielectric layer[J]. Advanced Materials Technologies, 2018, 3 (1): 1700237
doi: 10.1002/admt.201700237
[29]   KIM H, KIM G, KIM T, et al Transparent, flexible, conformal capacitive pressure sensors with nanoparticles[J]. Small, 2018, 14 (8): 1703432
doi: 10.1002/smll.201703432
[30]   LUO Y, SHAO J, CHEN S, et al Flexible capacitive pressure sensor enhanced by tilted micropillar arrays[J]. ACS Applied Materials and Interfaces, 2019, 11 (19): 17796- 17803
doi: 10.1021/acsami.9b03718
[31]   PYO S, CHOI J, KIM J Flexible, transparent, sensitive, and crosstalk-free capacitive tactile sensor array based on graphene electrodes and air dielectric[J]. Advanced Electronic Materials, 2017, 4 (1): 1700427
[32]   CHEN S, ZHUO B, GUO X, et al Large area one-step facile processing of microstructured elastomeric dielectric film for high sensitivity and durable sensing over wide pressure range[J]. ACS Applied Materials and Interfaces, 2016, 8 (31): 20364- 20370
doi: 10.1021/acsami.6b05177
[33]   GUO Y, GAO S, YUE W, et al Anodized aluminum oxide-assisted low-cost flexible capacitive pressure sensors based on double-sided nanopillars by a facile fabrication method[J]. ACS Applied Materials and Interfaces, 2019, 11 (51): 48594- 48603
doi: 10.1021/acsami.9b17966
[34]   CHHETRY A, YOON H, PARK J Y A flexible and highly sensitive capacitive pressure sensor based on conductive fibers with a microporous dielectric for wearable electronics[J]. Journal of Materials Chemistry C, 2017, 5 (38): 10068- 10076
doi: 10.1039/C7TC02926H
[35]   ELAYES A, SHARMA V, YIANNACOU K, et al Plant-based biodegradable capacitive tactile pressure sensor using flexible and transparent leaf skeletons as electrodes and flower petal as dielectric layer[J]. Advanced Sustainable Systems, 2020, 4 (9): 2000056
doi: 10.1002/adsu.202000056
[36]   SUN Y, TAI H, YUAN Z, et al A facile strategy for low young's modulus PDMS microbeads enhanced flexible capacitive pressure sensors[J]. Particle and Particle Systems Characterization, 2021, 38 (7): 2100019
doi: 10.1002/ppsc.202100019
[37]   KIM J, CHOU E, LE J, et al Soft wearable pressure sensors for beat-to-beat blood pressure monitoring[J]. Advanced Healthcare Materials, 2019, 8 (13): 1900109
doi: 10.1002/adhm.201900109
[1] YIN Xi-zhen, MA Cheng-yan, YE Tian-chun, XIAO Shi-mao, YU Yun-feng. Fractional-N frequency synthesizer for high sensitivity GNSS receiver[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(1): 70-76.