Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (7): 1299-1307    DOI: 10.3785/j.issn.1008-973X.2021.07.009
    
Stability analyses of submarine slopes based on shear band propagation method
Jia-yi SHEN1(),Meng KU1,Li-zhong WANG2,3
1. Ocean College, Zhejiang University, Zhoushan 316000, China
2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
3. Key Laboratory of Offshore Geotechnics and Material of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1093KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The principle of shear band propagation method (SBP) and its application in the stability analysis of submarine landslides were briefly introduced. Then, Limit equilibrium method(LEM)and the SBP based on the Gauss formula were used to analyze the stability of a typical submarine slope in Liuheng island, Zhoushan, China. Finally, parametric studies were carried out to investigate the effects of input parameters of the SBP on the shear band propagation coefficient R. Results show that when R no more than 1, the failure length of the slope shear zone obtained by the LEM is the same as that of the SBP. However, when R more than 1, the failure length of the slope shear zone calculated by the SBP is larger than that calculated by the LEM. Besides, it can be seen that the factor of safety calculated by the SBP is lower than that of the LEM in the failure zone of the slope. It is found that both the seismic factors and characteristic displacement have a great influence on R values.



Key wordssubmarine landslide      stability analysis      shear band propagation method (SBP)      sensitivity analysis     
Received: 24 July 2020      Published: 05 July 2021
CLC:  P 751  
Fund:  国家自然科学基金资助项目(51939010);中央高校基本科研业务费专项资金资助项目(2021QNA4037)
Cite this article:

Jia-yi SHEN,Meng KU,Li-zhong WANG. Stability analyses of submarine slopes based on shear band propagation method. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1299-1307.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.07.009     OR     https://www.zjujournals.com/eng/Y2021/V55/I7/1299


基于剪切带扩展法的海底斜坡稳定性分析

简介剪切带扩展法(SBP)的原理及其在海底滑坡稳定性分析的应用;以舟山六横岛典型海底斜坡为分析案例,开展基于高斯函数的SBP和极限平衡法(LEM)斜坡稳定性对比分析研究;进行SBP输入参数对剪切带扩展系数R的敏感度分析. 研究结果显示,对于斜坡剪切带破坏长度,当剪切带扩展系数R不大于1时,LEM与SBP得到的滑坡滑裂面区域一致,当R大于1时,SBP计算得到的最终滑动区域比LEM计算得到的区域大;在斜坡发生滑动破坏区域SBP比LEM计算得到的安全系数低;地震影响因素和土体特征位移对R的影响较大.


关键词: 海底滑坡,  稳定性分析,  剪切带扩展法(SBP),  敏感度分析 
Fig.1 Diagram of stress-strain relationship and instability zone
Fig.2 Distribution of shear zone and shear stress ratio on submarine slope[22]
Fig.3 Topography of submarine slopes of Liuheng island
参数类型 参数 符号/单位 取值
地震参数 地震影响系数 kh 0.08
地震折减系数 δd 0.6
土体物理力学参数 不排水抗剪强度系数 k 0.25
峰值抗剪强度/残余抗剪强度 s 5.0
土体的特征位移 $\bar \delta $/m 0.5
归一化超孔隙水压力 ru 0.0
土体的有效重度 γ′/(kN·m?3 8.0
加荷弹性模量 E1 300τp
卸荷弹性模量 Eu 600τp
Tab.1 Values of input parameters of SBP
Fig.4 Curve fitting of submarine slope
Fig.5 Distribution of shear stress ratio
Fig.6 Distribution for FS of submarine slope
Fig.7 Program for submarine slopes stability analysis based on SBP
参数 符号/单位 取值范围
不排水抗剪强度系数 k 0.23~0.27
峰值抗剪强度/残余抗剪强度 s 4~8
地震影响系数 kh 0.06~0.10
地震折减系数 δd 0.45~0.65
土体特征位移 $\bar \delta $/m 0.2~1.0
土体的有效重度 γ′/(kN·m?3 8~12
Tab.2 Range of input parameters for SBP
Fig.8 Influence of SBP input parameters on shear band propagation coefficient
参数 符号/单位 $\overline S \ $
地震影响系数 kh 1.14
地震折减系数 δd 1.07
土体特征位移 $\bar \delta $/m 0.85
不排水抗剪强度系数 k 0.48
土体有效重度 γ′/(kN·m?3 0.23
峰值抗剪强度/残余抗剪强度 s 0.09
Tab.3 Average sensitivity coefficient of input parameters for SBP
[1]   LEE H J, LOCAT J, DESGAGNÉS P, et al. Submarine mass movements on continental margins [M]. Oxford: Blackwell Publishing Limited. 2007.
[2]   HAMPTON M A, LEE H J, LOCAT J Submarine landslides[J]. Reviews of Geophysics, 1996, 34 (1): 33- 59
doi: 10.1029/95RG03287
[3]   BRYN P, BERG K, LIEN R, et al Submarine slides on the Mid-Norwegian continental margin: a challenge to the oil industry[J]. Norwegian Petroleum Society Special Publications, 2005, 12: 255- 263
[4]   VANNESTE M, SULTAN N, GARZIGLIA S, et al Seafloor instabilities and sediment deformation processes: the need for integrated, multidisciplinary investigations[J]. Marine Geology, 2014, 352: 183- 214
doi: 10.1016/j.margeo.2014.01.005
[5]   MCADOO B G, PRATSON L F, ORANGE D L Submarine landslide geomorphology, US continental slope[J]. Marine Geology, 2000, 169 (1-2): 103- 136
doi: 10.1016/S0025-3227(00)00050-5
[6]   BEA R G How sea floor slides affect offshore structures[J]. Oil and Gas Journal, 1971, 69: 88- 92
[7]   HEINRICH P, PIATANESI A, OKAL E, et al Near-field modeling of the July 17, 1998 tsunami in Papua New Guinea[J]. Geophysical Research Letters, 2000, 27 (19): 3037- 3040
doi: 10.1029/2000GL011497
[8]   HSU S K, KUO J, LO C L, et al Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2008, 19 (6): 767- 772
doi: 10.3319/TAO.2008.19.6.767(PT)
[9]   SHEN J, KARAKUS M, XU C Chart-based slope stability assessment using the generalized Hoek-Brown criterion[J]. International Journal of Rock Mechanics and Mining sciences, 2013, 64: 210- 219
doi: 10.1016/j.ijrmms.2013.09.002
[10]   LAW K T, LUMB P A limit equilibrium analysis of progressive failure in the stability of slopes[J]. Canadian Geotechnical Journal, 1978, 15 (1): 113- 122
doi: 10.1139/t78-009
[11]   郑颖人, 赵尚毅 有限元强度折减法在土坡与岩坡中的应用[J]. 岩石力学与工程学报, 2004, 23 (19): 3381- 3388
ZHENG Ying-ren, ZHAO Shang-yi Application of strength reduction FEM in soil and rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23 (19): 3381- 3388
doi: 10.3321/j.issn:1000-6915.2004.19.029
[12]   SHEN J, KARAKUS M Three-dimensional numerical analysis for rock slope stability using shear strength reduction method[J]. Canadian Geotechnical Journal, 2014, 51: 164- 172
doi: 10.1139/cgj-2013-0191
[13]   NISBET E G, PIPER D J W Giant submarine landslides[J]. Nature, 1998, 392: 329- 330
doi: 10.1038/32765
[14]   LEGROS F The mobility of long-runout landslides[J]. Engineering Geology, 2002, 63 (3-4): 301- 331
doi: 10.1016/S0013-7952(01)00090-4
[15]   CLARE M A, TALLING P J, CHALLENOR P, et al Distal turbidites reveal a common distribution for large (>0.1 km3) submarine landslide recurrence [J]. Geology, 2014, 42 (3): 263- 266
doi: 10.1130/G35160.1
[16]   PALMER A C, RICE J R The growth of slip surfaces in the progressive failure of over-consolidated clay[J]. Proceedings of the Royal Society A: Mathematical and Physical Sciences, 1973, 332: 527- 548
[17]   PUZRIN A M, GERMANOVICH L N The growth of shear bands in the catastrophic failure of soils[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461: 1199- 1228
doi: 10.1098/rspa.2004.1378
[18]   KVALSTAD T J, ANDRESEN L, FORSBERG C F, et al The storegga slide: evaluation of triggering sources and slide mechanics[J]. Marine and Petroleum Geology, 2005, 22 (1-2): 245- 256
doi: 10.1016/j.marpetgeo.2004.10.019
[19]   LOCAT A, LEROUEIL S, BERNANDER S, et al Progressive failures in eastern Canadian and Scandinavian sensitive clays[J]. Canadian Geotechnical Journal, 2011, 48 (11): 1696- 1712
doi: 10.1139/t11-059
[20]   ZHANG W, WANG D, RANDOLPH M F, et al Dynamic propagation criteria for catastrophic failure in planar landslides[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40 (17): 2312- 2338
doi: 10.1002/nag.2531
[21]   BERNANDER S, KULLINGSJÖ A, GYLLAND A, et al Downhill progressive landslides in long natural slopes: triggering agents and landslide phases modeled with a finite difference method[J]. Canadian Geotechnical Journal, 2016, 53 (10): 1565- 1582
doi: 10.1139/cgj-2015-0651
[22]   PUZRIN A M, GRAY T E, HILL A J Significance of the actual nonlinear slope geometry for catastrophic failure in submarine landslides[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471: 1- 25
[23]   ADAMS E W, SCHLAGER W Basic types of submarine slope curvature[J]. Journal of Sedimentary Research, 2000, 70 (4): 814- 828
doi: 10.1306/2DC4093A-0E47-11D7-8643000102C1865D
[24]   PUZRIN A M, GERMANOVICH L N, FRIEDLI B Shear band propagation analysis of submarine slope stability[J]. Géotechnique, 2016, 66 (3): 188- 201
[25]   PUZRIN A M, GRAY T E, HILL A J Retrogressive shear band propagation and spreading failure criteria for submarine landslides[J]. Géotechnique, 2017, 67 (2): 1- 11
[26]   HANCE J J. Submarine slope stability[D]. Austin: University of Texas at Austin. 2003.
[27]   中华人民共和国住房和城乡建设部. GB 50011-2010 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.
[28]   中华人民共和国水利部. GB 51247—2018 水工建筑物抗震设计规范[S]. 北京: 中国计划出版社, 2018.
[29]   SAURER E, PUZRIN A M Validation of the energy-balance approach to curve-shaped shear-band propagation in soil[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467: 627- 652
doi: 10.1098/rspa.2010.0285
[30]   孙鸿程, 蔡廷禄, 夏小明, 等 舟山六横岛海域浅部地层结构与水下滑坡分布特征[J]. 海洋学研究, 2019, 37 (1): 59- 66
SUN Hong-cheng, CAI Yan-lu, XIA Xiao-ming, et al Distribution characteristics of subaqueous landslides in the sea area of Liuheng Island, Zhoushan[J]. Journal of Marine sciences, 2019, 37 (1): 59- 66
doi: 10.3969/j.issn.1001-909X.2019.01.008
[31]   龙凡, 王立忠, 李凯, 等 舟山黏土和温州黏土灵敏度差别成因[J]. 浙江大学学报: 工学版, 2015, 49 (2): 218- 224
LONG Fan, WANG Li-zhong, LI Kai, et al Cause of sensitivity difference of Zhoushan clay and Wenzhou clay[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (2): 218- 224
[32]   倪恒, 刘佑荣, 龙治国 正交设计在滑坡敏感性分析中的应用[J]. 岩石力学与工程学报, 2002, 21 (7): 989- 992
NI Heng, LIU You-rong, LONG Zhi-guo Application of orthogonal design to sensitivity analysis of landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21 (7): 989- 992
doi: 10.3321/j.issn:1000-6915.2002.07.010
[1] Ying LI,Guan-xiong WANG,Wei YAN,Ying-ge ZHAO,Chong-lei MA. Improved sparse grid collocation method for uncertainty quantification of EIT conductivity distribution[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 613-621.
[2] Xiu-fen ZHANG,Yun-fei GAO. Multi-dimensional hierarchical remanufacturability evaluation method for end-of-life mechanical parts[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 954-962.
[3] Teng-yi HUANG,Jin ZHOU,Yan XU,Fan-xu MENG. Modeling of MR damper based on multi-field coupling analysis and influence of structural parameters[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2001-2008.
[4] Liang LV,Hong CHEN,Xun GONG,Hai-guang ZHAO,Yun-feng HU. Cooling system modeling and coolant temperature control for gasoline engine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1119-1129.
[5] Feng CHENG,Dong ZHANG,Shuo TANG. Aerodynamics/propulsion coupled modeling and analysis of hypersonic vehicle within wide speed range[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 1006-1018.
[6] Jin ZHOU,Tian-yu GAO,Yi CHEN,Hong-hao XI. Model updating of dual-rotor decanter centrifuge with dynamic test[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 241-249.
[7] Hai-hui YUAN,Yi-min GE,Chun-biao GAN. Adaptive robust control of dynamic walking of bipedal robots under uncertain disturbances[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2049-2057.
[8] REN Song, OUYANG Xun, WU Jian-xun, CHEN Fan, WANG Liang, CHEN Jie. Elastic-swelling analytical model of anhydrite rock considering time-dependent effect[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 896-905.
[9] BAO Teng-fei, LI Jian-ming, ZHAO Jin-lei. Strain transfer analysis between embedded plastic optical fibers and concretes[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2342-2348.
[10] LUO Yue, YE Shu-jun, WU Ji-chun, ZHANG Yan-hong, JIAO Xun, WANG Han-mei. Global sensitivity analysis of parameters in land subsidence model[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 2007-2013.
[11] FU Jian-xin, SONG Wei-dong, TAN Yu-ye. Influence degree analysis of rock mass' mechanical parameters on roadway's deformation characteristics[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2365-2372.
[12] LIU Kai, CAO Yi, ZHOU Rui, GE Shu-yi, DING Rui. Modeling and optimizing of one-translational and two-rotational LEMs flexure hinge[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2399-2407.
[13] ZHU Zhao-chen, XIANG Yang, LUO Yong-feng. Characteristic stiffness method for static stability analysis and assessment of spatial structure[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2112-2120.
[14] HE Hai bin, YAO Dong wei, WU Feng. Construction and optimization of kinetic mechanism for alternative fuel of COG[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1841-1848.
[15] YIN Jiao-mei, ZHAO Xin-yue, ZHANG Shu-you. Method for designing parts structure to resist harsh environments considering sobol defects sensitivity[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1487-1494.