Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (11): 2049-2057    DOI: 10.3785/j.issn.1008-973X.2019.11.001
Mechanical Engineering     
Adaptive robust control of dynamic walking of bipedal robots under uncertain disturbances
Hai-hui YUAN(),Yi-min GE,Chun-biao GAN*()
School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(4626KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A dynamic model for the bipedal robots under uncertain disturbances was established, aiming at the robust control problem of dynamic bipedal walking under uncertain disturbances. The specific Poincaré mapping method was extended to the stability analysis of bipedal robots under uncertain disturbances, by which the stability analysis of a robot random system was transformed into that of a deterministic and periodic system. An adaptive sliding-mode controller was proposed based on the sliding-mode control method. Compared with the traditional sliding-mode controllers, the proposed controller is applicable even when the magnitude information of the external disturbances is not accurately estimated. Considering that bipedal robots often encounter uneven terrains, the proposed sliding-mode controller was further extended to the robust control of dynamic walking on uneven terrains. For this goal, an invariance condition for impact velocity was presented and the trajectories were planned online based on landing-velocity control. Then, the presented controller was used to enforce feedback control on the robot. Numerical simulations were performed on a three-dimensional (3-D) five-link bipedal robot, and results show that the robust control of dynamic bipedal walking subject to uncertain disturbances can be realized by the proposed controller effectively.



Key wordsbipedal robot      dynamic walking      uncertain disturbance      stability analysis      robust control     
Received: 15 September 2018      Published: 21 November 2019
CLC:  TU 111  
Corresponding Authors: Chun-biao GAN     E-mail: hh_yuan@zju.edu.cn;cb_gan@zju.edu.cn
Cite this article:

Hai-hui YUAN,Yi-min GE,Chun-biao GAN. Adaptive robust control of dynamic walking of bipedal robots under uncertain disturbances. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2049-2057.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.11.001     OR     http://www.zjujournals.com/eng/Y2019/V53/I11/2049


不确定性扰动下双足机器人动态步行的自适应鲁棒控制

针对不确定性扰动下双足机器人动态步行的鲁棒控制问题,建立不确定性扰动下双足机器人的动力学模型. 将特定庞卡莱映射方法拓展到不确定性扰动下双足机器人的稳定性分析,将机器人随机系统的稳定性分析转化为确定性周期系统的稳定性分析. 基于滑模控制方法,提出自适应滑模控制器. 与以往滑模控制器相比,该控制器无需外部扰动的准确幅值信息. 考虑到双足机器人在实际应用中常会遭遇非平整路面,进一步将该自适应滑模控制器拓展到非平整路面的鲁棒控制:提出碰撞速度不变性条件,基于落地速度控制进行在线轨迹规划,基于自适应滑模控制器对机器人进行反馈控制. 基于三维(3-D)五杆双足机器人进行仿真实验,结果表明,所设计的控制器能有效实现机器人在不确定性扰动下的鲁棒控制.


关键词: 双足机器人,  动态步行,  不确定性扰动,  稳定性分析,  鲁棒控制 
Fig.1 Mathematic model of 3-D bipedal robot
Fig.2 Schematic diagram of uncertain disturbances
Fig.3 Block diagram of robot control system based on adaptive sliding-mode controller
Fig.4 Kinematic model of swing-leg joints
Fig.5 Evolution of samples of random processes with time
Fig.6 Phase portraits and Poincaré map for robot system without accurate estimation of magnitude information of external disturbances
Fig.7 Phase portraits and Poincaré map for robot system subject to different controller parameters
Fig.8 Phase portraits and specific Poincaré map for biped robot subject to uncertain disturbances
Fig.9 Phase portraits and specific Poincaré map for biped robot subject to uncertain disturbances and uneven terrains
[1]   CHEN X, YU Z G, ZHANG W, et al Bio-inspired control of walking with toe-off, heel-strike and disturbance rejection for a biped robot[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (10): 7962- 7971
doi: 10.1109/TIE.2017.2698361
[2]   KUINDERSMA S, DEITS R, FALLON M, et al Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot[J]. Autonomous Robots, 2016, 40 (3): 429- 455
doi: 10.1007/s10514-015-9479-3
[3]   ZHAO Y, FERNANDEZ B R, SENTIS L Robust optimal planning and control of non-Periodic bipedal locomotion with a centroidal momentum model[J]. The International Journal of Robotics Research, 2017, 36 (11): 1211- 1242
doi: 10.1177/0278364917730602
[4]   DAI H, TEDRAKE R. L2-gain optimization for robust bipedal walking on unknown terrain [C]// 2013 IEEE International Conference on Robotics and Automation. Karlsruhe: IEEE, 2013: 3116-3123.
[5]   YANCO H A, NORTON A, OBER W, et al Analysis of human?robot interaction at the DARPA robotics challenge trials[J]. Journal of Field Robotics, 2015, 32 (3): 420- 444
doi: 10.1002/rob.21568
[6]   KOBAYASHI T, AOYAMA T, HASEGAWA Y, et al Adaptive speed controller using swing leg motion for 3-D limit-cycle-based bipedal gait[J]. Nonlinear Dynamics, 2016, 84 (4): 1- 20
[7]   葛一敏, 袁海辉, 甘春标 基于步态切换的欠驱动双足机器人控制方法[J]. 力学学报, 2018, 50 (4): 871- 879
GE Yi-min, YUAN Hai-hui, GAN Chun-biao Control method of an underactuated biped robot based on gait transition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50 (4): 871- 879
doi: 10.6052/0459-1879-18-049
[8]   RAHMANI M, GHANBARI A, ETTEFAGH M M A novel adaptive neural network integral sliding-mode control of a biped robot using bat algorithm[J]. Journal of Vibration and Control, 2018, 24 (10): 2045- 2060
doi: 10.1177/1077546316676734
[9]   SANTOS C P, ALVES N, MORENO J C Biped locomotion control through a biomimetic CPG-based controller[J]. Journal of Intelligent and Robotic Systems, 2016, 85: 1- 24
[10]   田彦涛, 孙中波, 李宏扬, 等 动态双足机器人的控制与优化研究进展[J]. 自动化学报, 2016, 42 (8): 1142- 1157
TIAN Yan-tao, SUN Zhong-bo, LI Hong-yang, et al A review of optimal and control strategies for dynamic walking bipedal robots[J]. Acta Automatica Sinica, 2016, 42 (8): 1142- 1157
[11]   VEER S, MOTAHAR M S, POULAKAKIS I. On the adaptation of dynamic walking to persistent external forcing using hybrid zero dynamics control [C]// 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg: IEEE, 2015: 997-1003.
[12]   WANG L, GE Y, CHEN M, et al Dynamical balance optimization and control of biped robots in double-support phase under perturbing external forces[J]. Neural Computing and Applications, 2017, 28 (12): 4132- 4137
[13]   HAMED K A, BUSS B G, GRIZZLE J W Exponentially stabilizing continuous-time controllers for periodic orbits of hybrid systems: application to bipedal locomotion with ground height variations[J]. The International Journal of Robotics Research, 2016, 35 (8): 977- 999
doi: 10.1177/0278364915593400
[14]   SUN Z, ROOS N Dynamically stable walk control of biped humanoid on uneven and inclined terrain[J]. Neurocomputing, 2018, 280: 111- 122
doi: 10.1016/j.neucom.2017.08.077
[15]   MANCHESTER I R, METTIN U, IIDA F, et al Stable dynamic walking over uneven terrain[J]. The International Journal of Robotics Research, 2011, 30 (3): 265- 279
doi: 10.1177/0278364910395339
[16]   SABOURIN C, BRUNEAU O, BUCHE G Control strategy for the robust dynamic walk of a biped robot[J]. The International Journal of Robotics Research, 2006, 25 (9): 843- 60
doi: 10.1177/0278364906069151
[17]   HAMED K A, GRIZZLE J W Event-based stabilization of periodic orbits for underactuated 3-D bipedal robots with left-right symmetry[J]. IEEE Transactions on Robotics, 2014, 30 (2): 365- 381
doi: 10.1109/TRO.2013.2287831
[18]   MONTANO O, ORLOV Y, AOUSTIN Y, et al. Robust stabilization of a fully actuated 3D bipedal locomotion via nonlinear H∞-control under unilateral constraints [C]// 2016 IEEE-RAS, International Conference on Humanoid Robots. Cancun: IEEE, 2016: 538-543.
[19]   MAKAROV D, ULEYSKY M Specific Poincaré map for a randomly-perturbed nonlinear oscillator[J]. Journal of Physics: A General Physics, 2005, 39 (3): 489
[20]   SHINOZUKA M, JAN C M Digital simulation of random processes and its applications[J]. Journal of Sound and Vibration, 1972, 25 (1): 111- 28
doi: 10.1016/0022-460X(72)90600-1
[21]   GAN C B, YANG S X, LEI H A kind of noise-induced transition to noisy chaos in stochastically perturbed dynamical system[J]. Acta Mechanica Sinica, 2012, 28 (5): 1416- 23
doi: 10.1007/s10409-012-0084-9
[22]   SLOTINE J-J E, LI W. Applied nonlinear control [M]. Englewood Cliffs: Prentice hall, 1991.
[1] Liang LV,Hong CHEN,Xun GONG,Hai-guang ZHAO,Yun-feng HU. Cooling system modeling and coolant temperature control for gasoline engine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1119-1129.
[2] WEI Jian-hua, SUN Chun-geng, FANG Jin-hui, WANG Gang. Adaptive robust motion control of composite material hydraulic press[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 925-933.
[3] WAGN Yao-yao, GU Lin-yi, CHEN Bai, WU Hong-tao. Nonsingular terminal sliding mode control of underwater vehicle-manipulator system[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 934-942.
[4] TAO Guo-liang, ZHOU Chao-chao, SHANG Ce. Pneumatic position servo embedded controller and control strategy[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 792-799.
[5] ZHU Zhao-chen, XIANG Yang, LUO Yong-feng. Characteristic stiffness method for static stability analysis and assessment of spatial structure[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2112-2120.
[6] XIONG Yi, WEI Jian hua, FENG Rui lin, ZHANG Qiang. Global task coordinate frame based contouring control for biaxial electrohydraulic system[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2063-2072.
[7] WANG Ting, CHEN Bin, YAO Wen-xi, LV Zheng-yu. Pefrormance analysis of holtz flux observer in speed-sensorless induction motor drive[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1690-1695.
[8] YANG Bo, ZHONG Yan-ru, ZENG Guang. DC capacitor voltage balance control strategy of cascade static synchronous compensator based on step wave modulation[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 600-609.
[9] ZHAO Quan-li, SUN Hong-yue, SHANG Yue-quan, WANG Zhi-lei. Effect of temporal and spatial variation of pore water pressure induced by confined groundwater on slope stability[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1366-1372.
[10] YE Qiu-hong, LING Dao-sheng. Limit equilibrium analysis method based on vector sum method for 3D slope[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(6): 1097-1103.
[11] HE Nai-bao, GAO Qian, XU Qi-hua, JIANG Chang-sheng. Anti-interference control of NSV based on adaptive observer[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(4): 650-655.
[12] YAN Bo, JIANG Dao-zhuo, GAN De-qiang, ZANG Yu-qing. An UPFC nonlinear robust controller based on feedback
linearization H∞ method
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(11): 1975-1980.
[13] WANG Hui-fang, ZHU Shi-qiang, WU Wen-xiang. Improved adaptive robust control of servo system with harmonic drive[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(10): 1757-1763.
[14] BAI Han, GUAN Cheng. Robust adaptive dynamic surface control of electro-hydraulic
proportional system
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(8): 1441-1448.
[15] LIU Zhao-Yan, JIANG Quan-Yuan, XU Li-Zhong,et al. Stability regions of time-delayed power system based on clustering treatment of characteristic roots[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(8): 1473-1479.