Please wait a minute...
J4  2012, Vol. 46 Issue (10): 1757-1763    DOI: 10.3785/j.issn.1008-973X.2012.10.004
    
Improved adaptive robust control of servo system with harmonic drive
WANG Hui-fang1,2, ZHU Shi-qiang2, WU Wen-xiang2
1. Nanjing Special Equipment Safety Supervision Inspection Institute, Nanjing 210002, China;
2. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Considering the nature of position-dependent friction, an improved adaptive robust control algorithm was proposed for servo system with harmonic drive which was subject to significant nonlinear friction parameter, uncertainties and disturbance.The combination of sinusoidal and cosinoidal functions of positions with unknown weights was used to effectively capture the nature of positiondependent friction, and the combination of coulomb friction and viscous friction was used to capture the nature of velocitydependent friction.A proportional part of adaptive law was applied based on the desired compensation adaptive robust controller in order to improve the performance of parameters identification and attenuate high-frequency disturbance.The global stability of the system was proved theoretically.The proposed control scheme was applied to the same single-link manipulator together with adaptive robust control and desired compensation adaptive robust control under two sets. One considered the position-dependent friction and the other did not.Experimental results confirmed the validity of the proposed control scheme by comparing it with other control strategies.



Published: 01 October 2012
CLC:  TP 242.6  
Cite this article:

WANG Hui-fang, ZHU Shi-qiang, WU Wen-xiang. Improved adaptive robust control of servo system with harmonic drive. J4, 2012, 46(10): 1757-1763.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.10.004     OR     http://www.zjujournals.com/eng/Y2012/V46/I10/1757


谐波驱动伺服系统的改进自适应鲁棒控制

针对谐波驱动伺服系统存在参数不确定性、干扰及非线性摩擦的问题,考虑位置相关摩擦的特性,提出改进自适应鲁棒控制算法.采用未知参数的正余弦函数组合的形式表征位置相关摩擦的特性,采用库仑-黏性摩擦表征速度相关摩擦力的特性.在期望补偿自适应鲁棒控制算法的基础上,增加自适应律的比例项,提高参数辨识的性能,有效抑制系统高频干扰.理论证明了控制系统的全局稳定性.分别在考虑位置摩擦和未考虑位置摩擦的情况下,采用自适应鲁棒控制、期望补偿自适应鲁棒控制及改进自适应鲁棒控制算法对单自由度机械臂的谐波驱动伺服系统进行实验研究.结果表明,该方法具有良好的控制性能.

[1] 张晓东,贾庆轩,孙汉旭.空间机器人柔性关节轨迹控制研究[J].宇航学报,2008,29(6): 1865-4869.
 ZHANG Xiaodong, JIA Qingxuan, SUN Hanxu. The research of space robot flexible joint trajectory control [J]. Journal of Astronautics, 2008, 29(6): 1865-4869.
[2] LI Z. Development and control of a modular and recongurable robot with harmonic drive transmission system [D]. Waterloo: University of Waterloo, 2008.
[3] ZHU W H, DUPUIS E, DOYON M. Adaptive control of harmonic drives [J]. Journal of Dynamic Systems, Measurement, and Control, 2007, 129(2): 182-193.
[4] YAMAMOTO M, IWASAKI M, HIRAI H, et al. Modeling and compensation for angular transmission error in harmonic drive gearings [J]. IEEE Transactions on Electrical and Electronic Engineering, 2009, 4(2): 158-165.
[5] KENNEDY C W, DESAI J P. Modeling and control of the Mitsubishi PA10 robot arm harmonic drive system [J]. IEEE/ASME Transactions on Mechatronics, 2005, 10(3): 263-274.
[6] MELHEM K, WANG W. Global output tracking control of flexible joint robots via factorization of the manipulator mass matrix [J]. IEEE Transactions on Robotics, 2009, 25(2): 428-437.
[7] TANG Y, SUN F, SUN Z. Neural network control of flexiblelink manipulators using sliding mode [J]. Neurocomputing, 2006, 70(1/2/3): 288-295.
[8] ABDOLLAHI F, TALEBI H A, PATEL R V. A stable neural networkbased observer with application to flexiblejoint manipulators [J]. IEEE Transactions on Neural Networks, 2006, 17(1): 118-129.
[9] YAO B. Desired compensation adaptive robust control [J]. Journal of Dynamic Systems, Measurement, and Control, 2009, 131(6): 061001-7.
[10] TAGHIRAD H D, BELANGER P R. Modeling and parameter identification of harmonic drive systems [J]. Journal of Dynamic Systems, Measurement, and Control, 1998, 120(12): 439-444.

[1] CHEN Ming-ya, XIANG Zhi-yu, LIU Ji-lin. Assistance localization method for mobile robot based on
monocular natural visual landmarks
[J]. J4, 2014, 48(2): 285-291.
[2] LIN Ying, GONG Xiao-jin, LIU Ji-lin. Calibration of fisheye cameras based on the viewing sphere[J]. J4, 2013, 47(8): 1500-1507.
[3] OUYANG Liu, XU Jin, GONG Xiao-jin, LIU Ji-lin. Optimization of visual odometry based on uncertainty analysis[J]. J4, 2012, 46(9): 1572-1579.
[4] MA Li-sha, ZHOU Wen-hui, GONG Xiao-jin, LIU Ji-lin. Motion constrained generalized Field D* path planning[J]. J4, 2012, 46(8): 1546-1552.
[5] XU Jin, SHEN Min-yi, YANG Li, WANG Wei-qiang, LIU Ji-lin. Binocular bundle adjustment based localization
and terrain stitching for robot
[J]. J4, 2011, 45(7): 1141-1146.
[6] CHEN Jia-qian, LIUYu-tian, HE Yan, JIANG Jing-ping. Novel dynamic mapping method based on occupancy grid
model and sample sets
[J]. J4, 2011, 45(5): 794-798.
[7] CHEN Jia-Gan, HE Yan, JIANG Jing-Ping. Improved FastSLAM algorithm based on importance weight smoothing[J]. J4, 2010, 44(8): 1454-1459.
[8] MEI Gong, ZHANG Zhi-Feng, LAI Huan-Huan. Continuoustime based optimized scheduling of production process[J]. J4, 2010, 44(7): 1423-1427.
[9] XU Sheng-Lin, LIU Yan-Na. Modeling of biped robot by SimMechanics[J]. J4, 2010, 44(7): 1361-1367.
[10] BO Hua-Dong, WANG Ji-Cong, XIE Bin, HU Shi-Fang, LIU Ji-Lin. Data processing method of time-of-flight 3D imaging camera[J]. J4, 2010, 44(6): 1049-1056.
[11] WANG Li, XIONG Rong, CHU Jian, et al. Fuzzy evaluation based exploring planning for map building in unknown environment[J]. J4, 2010, 44(2): 253-258.
[12] CHEN Shao-Bin, JIANG Jing-Ping. Optimal state feedback control for trajectory tracking of four-wheel mobile robot[J]. J4, 2009, 43(12): 2186-2190.