Please wait a minute...
J4  2014, Vol. 48 Issue (2): 285-291    DOI: 10.3785/j.issn.1008-973X.2014.02.015
    
Assistance localization method for mobile robot based on
monocular natural visual landmarks
CHEN Ming-ya1,2, XIANG Zhi-yu1,2, LIU Ji-lin1,2
1. Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China;
2. Zhejiang Provincial Key Laboratory of Information Network Technology, Hangzhou 310027, China
Download:   PDF(1885KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In many occasions GPS signal may be blocked, leading the quick drop of the positioning accuracy for the robot. We present an assistance localization method for mobile robot based on the monocular natural visual landmarks. A landmark library containing the images from several scenes of the environment was set up before navigation. Each acquired image was matched with the visual landmarks while navigation, where INS positioning was used for rough localization. A fast image matching framework based on combining usage of GIST global features and SURF local features was presented. The Orientation was corrected from Structure From Motion algorithm as well. Finally a Kalman Filter was used to fuse the localization results from visual landmarks and the INS method. The results show that the proposed method improves the positioning accuracy under GPS blocked area and makes the system more robust.



Published: 01 February 2014
CLC:  TP 242.6  
Cite this article:

CHEN Ming-ya, XIANG Zhi-yu, LIU Ji-lin. Assistance localization method for mobile robot based on
monocular natural visual landmarks. J4, 2014, 48(2): 285-291.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.02.015     OR     http://www.zjujournals.com/eng/Y2014/V48/I2/285


单目视觉自然路标辅助的移动机器人定位方法

针对很多场合下GPS信号会受到遮挡而无法使用,导致机器人定位精度下降很快的问题,提出一种基于单目视觉自然路标辅助的机器人绝对定位方法.在导航环境中的若干位置预先建立视觉路标库.机器人在利用惯导(INS)定位过程中,同时对采集到的单目图像和库中的视觉路标进行匹配.建立基于全局特征信息(GIST)和快速鲁棒算子(SURF)局部特征相结合的在线图像快速匹配框架,同时结合基于单目视觉的运动估计算法修正车体航向.最后利用卡尔曼滤波将视觉路标匹配获得的定位信息和INS有效地融合起来.结果表明,该方法有效地提高在GPS受限情况下惯性导航定位的精度和鲁棒性.

[1] NISTER D, NARODITSKY O, BERGEN J. Visual odometry [C]∥Pro-ceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC:[s.n.], 2004: 652-659.
[2] SCARAMUZZA D, SIEGWART R. Appearance-guided monocul-ar omnidirectional visual odometry for outdoor ground veh-icles[J].IEEE Transactions on Robotics, 2008,24(5): 1015-1026.
[3] BAILEY T. Mobile robot localization and mapping in exte-nsive outdoor environments[D].Sydney, Australia: Universityof Sydney,2002.
[4] FRESE U, HIRZINGER G. Simultaneous localization and mapping a discussion [C]∥In Proceedings of the IJCAI Wor-kshop on Reasoning with Uncertainty in Robotics. Seattle:[s.n.]2001: 17-26.
[5] HUSTER A, ROCK S. Relative position sensing by fusing monocular vision and inertial rate sensors [C]∥ in Proceedi-ngs of 11th International Conference Advanced Robotics. Coimbra, Portugal:[s.n.]. 2003: 1562-1567.
[6] STRELOW D, SINGH S. Motion estimation from image and inertial measurements [J]. International Journal of Robotics Research, 2004,23(12): 1157-1195.
[7] CUMMINNS M, NEWMAN P. FAB-MAP: probabilistic loca-lization and mapping in the space of appearance[J]. Inte-rnational Journal of Robotics Research, 2008,27(6): 647-665.
[8] IKEDA K, TANAKA K. Visual robot localization using co-mpact binary landmarks [C]∥Proceedings of the IEEE ICRA. Florida: [s.n]. 2010: 43974403.
[9] QUDDUS M A, OCHIENG W Y, NOLAND R B. Current ma-pmatching algorithms for transport applications: State-of-theart and future research directions [J]. Transportation Researc-h Part C, 2007,15(5): 312328.
[10] PARK C, KIM S, PARK S K. Vision-based global local-ization for mobile robots with hybrid maps of objects and spatial layouts[J]. Information Science, 2009,179(24): 41744198.
[11] LOVESKY I, SHIMSHONI I. Reliable and efficient landma-rkbased localization for mobile robots [J]. Robotics and Aut-onomous Systems, 2010,58(5): 520-528.
[12] OLIVA A. TORRALBA A. Modeling the shape of the scene: aholistic representation of the spatial envelope[J]. Internatio-nal Journal of Computer Vision,2001,42[3]: 145-175.
[13] BAY H, TUYTELAARS T, VAN GOOL L J. SURF: speeded up robust features[C]∥In Proc.ECCV. Austria:[s.n].2006,10(3): 404-417.
[14] LOWE D G. Distinctive image features from scale-invariant keypoints [J].  International Journal of Computer Vision,2004,60(2): 91-110.
[15] REMONDINO F, FRASER C. Digital camera calibration me-thods: considerations and comparisons [C]∥In Proc.ISP-RS Commission V Symposium. Dresden:[s.n.]. 2006: 266-272.
[16] KOENDERINK J, DORRN A V. Affine structure from moti-on [J]. Journal of the Optical Society of America A, 1991, 8(2): 337-385.
[17] FISCHLER M A, BOLLES R C. Random sample consens-us: a paradigm for model fitting with applications to image analysis and automated cartography [J].Communicat-ion of the ACM, 1981,24: 381-385.
[18] NOCEDAL, WRIGHT S J. Numerical optimization[M]. New York: Springer,1999: 200-263.
[19] GOLUB G H, REINSCH C. Singular value decomposition and least squares solutions [J],Numerical Mathematics, 1970,14: 403420.
[20] CHUL W K,  CHAN G P. Attitude estimationwith accelerometers and gyros using fuzzy tuned kalman filter[C]∥In Proceedings of the European Control Conference. Budapest, Hungary:[s.n]. 2009: 3713-3718.

[1] LIN Ying, GONG Xiao-jin, LIU Ji-lin. Calibration of fisheye cameras based on the viewing sphere[J]. J4, 2013, 47(8): 1500-1507.
[2] WANG Hui-fang, ZHU Shi-qiang, WU Wen-xiang. Improved adaptive robust control of servo system with harmonic drive[J]. J4, 2012, 46(10): 1757-1763.
[3] OUYANG Liu, XU Jin, GONG Xiao-jin, LIU Ji-lin. Optimization of visual odometry based on uncertainty analysis[J]. J4, 2012, 46(9): 1572-1579.
[4] MA Li-sha, ZHOU Wen-hui, GONG Xiao-jin, LIU Ji-lin. Motion constrained generalized Field D* path planning[J]. J4, 2012, 46(8): 1546-1552.
[5] XU Jin, SHEN Min-yi, YANG Li, WANG Wei-qiang, LIU Ji-lin. Binocular bundle adjustment based localization
and terrain stitching for robot
[J]. J4, 2011, 45(7): 1141-1146.
[6] CHEN Jia-qian, LIUYu-tian, HE Yan, JIANG Jing-ping. Novel dynamic mapping method based on occupancy grid
model and sample sets
[J]. J4, 2011, 45(5): 794-798.
[7] CHEN Jia-Gan, HE Yan, JIANG Jing-Ping. Improved FastSLAM algorithm based on importance weight smoothing[J]. J4, 2010, 44(8): 1454-1459.
[8] MEI Gong, ZHANG Zhi-Feng, LAI Huan-Huan. Continuoustime based optimized scheduling of production process[J]. J4, 2010, 44(7): 1423-1427.
[9] XU Sheng-Lin, LIU Yan-Na. Modeling of biped robot by SimMechanics[J]. J4, 2010, 44(7): 1361-1367.
[10] BO Hua-Dong, WANG Ji-Cong, XIE Bin, HU Shi-Fang, LIU Ji-Lin. Data processing method of time-of-flight 3D imaging camera[J]. J4, 2010, 44(6): 1049-1056.
[11] WANG Li, XIONG Rong, CHU Jian, et al. Fuzzy evaluation based exploring planning for map building in unknown environment[J]. J4, 2010, 44(2): 253-258.
[12] CHEN Shao-Bin, JIANG Jing-Ping. Optimal state feedback control for trajectory tracking of four-wheel mobile robot[J]. J4, 2009, 43(12): 2186-2190.