Please wait a minute...
J4  2011, Vol. 45 Issue (7): 1141-1146    DOI: 10.3785/j.issn.1008-973X.2011.07.001
    
Binocular bundle adjustment based localization
and terrain stitching for robot
XU Jin, SHEN Min-yi, YANG Li, WANG Wei-qiang, LIU Ji-lin
Department of Information and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order for robot to achieve future complex intelligent tasks such as path planning and obstacle avoidance, a binocular bundle adjustment based localization and stitching method was proposed to solve the problem of precise localization of the mobile robot and dense terrain mapping of unknown environment. The corresponding features in the inter-frames were tracked from the image sequences captured by the stereo vision system mounted on the mobile vehicle.Then the system estimated the location and pose of robot by using binocular bundle adjustment (BBA) method. Dense three-dimensional terrain reconstruction information was obtained by stereo matching of images captured by stereo camera. Then terrain reconstruction and stitching were realized incorporated with the pose information estimated by localization. Experimental results demonstrated the effectiveness and robustness of the system.



Published: 01 July 2011
CLC:  TP 242.6  
Cite this article:

XU Jin, SHEN Min-yi, YANG Li, WANG Wei-qiang, LIU Ji-lin. Binocular bundle adjustment based localization
and terrain stitching for robot. J4, 2011, 45(7): 1141-1146.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2011.07.001     OR     https://www.zjujournals.com/eng/Y2011/V45/I7/1141


基于双目光束法平差的机器人定位与地形拼接

为了实现自主移动机器人完成复杂智能任务,如路径规划和避障等,针对移动机器人在复杂未知环境中精确定位并对周围环境进行致密地形构建问题,提出一种基于双目光束法平差的机器人定位与致密地形拼接算法.利用安装在移动机器人上的立体相机获取图像序列,跟踪前后帧图像序列中的对应特征点,基于双目光束法平差优化(BBA)精确估计机器人位置姿态.对左右相机采集图像对进行立体匹配获取致密三维地形信息,结合定位时获取的旋转平移姿态,实现了地形的构建与拼接.实验结果表明,该算法具有较好的实时性和鲁棒性.

[1] MAIMONE M, CHENG Y, MATTHIES L, et al. Two years of visual odometry on the mars exploration rovers [J]. Journal of Field Robotics, Special Issue on Space Robotics, 2007, 24(3): 169-186.
[2] PRETTO A, MENEGATTI E, BENNEWITZ M, et al. A visual odometry framework robust to motion blur [C]∥ IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009: 2250-2257.
[3] SCARAMUZZA D, SIEGWART R. Appearanceguided monocular omnidirectional visual odometry for outdoor ground vehicles [J]. IEEE Transactions on Robotics, 2008, 24(5): 1015-1026.
[4] KONOLIGE K, AGRAWAL M. FrameSLAM: from bundle adjustment to realtime visual mapping [J]. IEEE Transactions on Robotics, 2008, 24(5): 1066-1077.
[5] SHEN M Y, XIANG Z Y, LIU J L, et al. Vision based terrain reconstruction for planet rover using a special binocular bundle adjustment [J]. Journal of Zhejiang University: Science A, 2008, 9(10): 1341-1350.
[6] BEIS J, LOWE D G. Shape indexing using approximate nearestneighbour search in highdimensional spaces [C]∥ Conference on Computer Vision and Pattern Recognition. Puerto Rico: [s.n.],1997: 1000-1006.
[7] LOWE D G. Distinctive image features from scaleinvariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[8] 张广军. 机器视觉 [M]. 北京:科学出版社,2005: 24-26.
[9] 马颂德,张正友. 计算机视觉 [M]. 北京:科学出版社,1997: 95-98.
[10] FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography [J]. ACM Communications, 1981, 24(6): 381-395.
[11] LEVENBERG K. A method for the solution of certain nonlinear problems in least squares [J]. Quarterly of Applied Mathematics, 1944, 2(2): 164-168.
[12] 王之卓. 摄影测量原理 [M]. 武汉:测绘科技大学出版社,2000: 10-11.
[13] 沈晔湖, 刘济林. 利用立体图对的三维人脸模型重建算法[J]. 计算机辅助设计与图形学学报, 2006, 12(18): 1904-1909.
SHEN Yehu, LIU Jilin. From stereo pairs to 3D face model [J]. Computer Aided Design and Computer Graphics, 2006, 12(18): 1904-1909.
[14] TRIGGS B, MCLAUCHLAN P, HARTLEY R, et al. A bundle adjustment: a modern synthesis [C]∥Proceedings of the International Workshop on Visual Algorithm: Theory and Practice. Corfu, Greece: [s.n.], 1999: 298-372.
[15] KWOLEK B. Visual odometry based on Gabor filters and sparse bundle adjustment [C]∥IEEE International Conference on Robotics and Automation. Roma: IEEE, 2007: 3573-3578.

[1] CHEN Ming-ya, XIANG Zhi-yu, LIU Ji-lin. Assistance localization method for mobile robot based on
monocular natural visual landmarks
[J]. J4, 2014, 48(2): 285-291.
[2] LIN Ying, GONG Xiao-jin, LIU Ji-lin. Calibration of fisheye cameras based on the viewing sphere[J]. J4, 2013, 47(8): 1500-1507.
[3] WANG Hui-fang, ZHU Shi-qiang, WU Wen-xiang. Improved adaptive robust control of servo system with harmonic drive[J]. J4, 2012, 46(10): 1757-1763.
[4] OUYANG Liu, XU Jin, GONG Xiao-jin, LIU Ji-lin. Optimization of visual odometry based on uncertainty analysis[J]. J4, 2012, 46(9): 1572-1579.
[5] MA Li-sha, ZHOU Wen-hui, GONG Xiao-jin, LIU Ji-lin. Motion constrained generalized Field D* path planning[J]. J4, 2012, 46(8): 1546-1552.
[6] CHEN Jia-qian, LIUYu-tian, HE Yan, JIANG Jing-ping. Novel dynamic mapping method based on occupancy grid
model and sample sets
[J]. J4, 2011, 45(5): 794-798.
[7] CHEN Jia-Gan, HE Yan, JIANG Jing-Ping. Improved FastSLAM algorithm based on importance weight smoothing[J]. J4, 2010, 44(8): 1454-1459.
[8] XU Sheng-Lin, LIU Yan-Na. Modeling of biped robot by SimMechanics[J]. J4, 2010, 44(7): 1361-1367.
[9] MEI Gong, ZHANG Zhi-Feng, LAI Huan-Huan. Continuoustime based optimized scheduling of production process[J]. J4, 2010, 44(7): 1423-1427.
[10] BO Hua-Dong, WANG Ji-Cong, XIE Bin, HU Shi-Fang, LIU Ji-Lin. Data processing method of time-of-flight 3D imaging camera[J]. J4, 2010, 44(6): 1049-1056.
[11] WANG Li, XIONG Rong, CHU Jian, et al. Fuzzy evaluation based exploring planning for map building in unknown environment[J]. J4, 2010, 44(2): 253-258.
[12] CHEN Shao-Bin, JIANG Jing-Ping. Optimal state feedback control for trajectory tracking of four-wheel mobile robot[J]. J4, 2009, 43(12): 2186-2190.