Please wait a minute...
J4  2009, Vol. 43 Issue (12): 2186-2190    DOI: 10.3785/j.issn.1008-973X.2009.12.010
    
Optimal state feedback control for trajectory tracking of four-wheel mobile robot
CHEN Shao-bin1,2, JIANG Jing-ping1
(1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;
2.College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350002, China)
Download:   PDF(937KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Optimal state feedback control was studied for trajectory tracking control of a four-wheel mobile robot in the presence of measure noise, model noise and input signal noise. The kinematic and dynamic model and the trajectory generation of the omnidirectional vehicle were established. The discrete state equations were derived. Then an optimal state feedback controller based on Lyapunov stability using the Kalman filter state with white noises estimation technique was derived. A self-adaptive control algorithm was presented to compensate for the effects of input signal noise. Simulation results demonstrate that the model measurement and input signal noises and disturbances of the system can be effectively compensated; the tracking precision and dynamic response speed of the system can be obviously increased.



Published: 16 January 2010
CLC:  TP 242.6  
Cite this article:

CHEN Shao-Bin, JIANG Jing-Ping. Optimal state feedback control for trajectory tracking of four-wheel mobile robot. J4, 2009, 43(12): 2186-2190.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2009.12.010     OR     http://www.zjujournals.com/eng/Y2009/V43/I12/2186


四轮移动机器人轨迹跟踪的最优状态反馈控制

对具有量测噪声、模型噪声和输入信号干扰的四轮移动机器人轨迹跟踪的最优状态反馈控制进行研究.建立系统的运动学与动力学方程和轨迹生成方程,导出了相应的离散状态方程式,采用卡尔曼滤波器对伴有高斯白噪声的系统状态方程进行了状态估计,提出一种基于李亚普诺夫稳定性的最优状态反馈控制策略.给出了补偿输入信号干扰的自适应算法.仿真结果表明,所提出的控制算法,在四轮移动机器人轨迹跟踪中,能有效地抑制系统的模型、量测和输入信号中的随机噪声和扰动,提高系统的跟踪精度和动态响应速度,使系统具有优良的静、动态特性.


[1] CARACCIOLO L, DE LUCA A, IANNITTI S. Trajectory tracking control of a four-wheel differentially driven mobile robot
[C] ∥ Proceedings of the IEEE International Conference on Robotics and Automation. Detroit, Michigan:IEEE, 1999:2632-2638.

[2] 赵冬斌,易建强,邓旭玥. 全方位移动机器人结构和运动分析
[J]. 机器人,2003,25(5):394-398.
ZHAO Dong-bin, YI Jian-qiang, DENG Xu-yue. Structure and kinematic analysis of omni-directional mobile robots
[J]. Robot,2003,25(5):394-398.

[3] CHUNG J H,YI B J,KIM W K,et al. The dynamic modeling and analysis for an omni-directional mobile robot with three caster wheels
[C] ∥ Proceedings of the IEEE International Conference on Robotics and Automation.Taipei, China:IEEE,2003:14-19.

[4] YI J G,SONG D Z,ZHANG J J,et al. Adaptive trajectory tracking control of skid-steered mobile robot
[C] ∥ Proceedings of the IEEE International Conference on Robotics and Automation. Roma,Italy∶IEEE,2007:2605-2610.

[5] KALMAR-NAGY T,GANGULY P,D’ANDREA R. Real-time trajectory generation for omnidirectional vehicles
[C] ∥ Proceedings of the American Control Conference. Anchorage,AK,US:
[ s.n.],2002:8-10.

[6] 裴辛哲,裴润,刘志远. 轮式移动机器人全局渐近镇定控制器设计
[J]. 系统仿真学报,2003,15(8):1101-1105.
PEI Xin-zhe,PEI Run,LIU Zhi-yuan. Design of global asymptotic stabilizing controllers of wheeled mobile robots
[J].Journal of System Simulation,2003,15(8):1101-1105.

[7] 熊蓉,张翮,禇健,等.四轮全方位移动机器人的建模和最优控制
[J]. 控制理论与应用,2006,23(1):93-98.
XIONG Rong,ZHANG He,CHU Jian,et al. Modeling and optimal control of omni-directional mobile robots
[J].Control Theory and Applications ,2006,23(1):93-98.

[8] KALMAR-NAGY T, D’ANDREA R, GANGULY P. Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle
[J]. Robotics and Autonomous Systems, 2004,46(1):47-64 .

[1] CHEN Ming-ya, XIANG Zhi-yu, LIU Ji-lin. Assistance localization method for mobile robot based on
monocular natural visual landmarks
[J]. J4, 2014, 48(2): 285-291.
[2] LIN Ying, GONG Xiao-jin, LIU Ji-lin. Calibration of fisheye cameras based on the viewing sphere[J]. J4, 2013, 47(8): 1500-1507.
[3] WANG Hui-fang, ZHU Shi-qiang, WU Wen-xiang. Improved adaptive robust control of servo system with harmonic drive[J]. J4, 2012, 46(10): 1757-1763.
[4] OUYANG Liu, XU Jin, GONG Xiao-jin, LIU Ji-lin. Optimization of visual odometry based on uncertainty analysis[J]. J4, 2012, 46(9): 1572-1579.
[5] MA Li-sha, ZHOU Wen-hui, GONG Xiao-jin, LIU Ji-lin. Motion constrained generalized Field D* path planning[J]. J4, 2012, 46(8): 1546-1552.
[6] XU Jin, SHEN Min-yi, YANG Li, WANG Wei-qiang, LIU Ji-lin. Binocular bundle adjustment based localization
and terrain stitching for robot
[J]. J4, 2011, 45(7): 1141-1146.
[7] CHEN Jia-qian, LIUYu-tian, HE Yan, JIANG Jing-ping. Novel dynamic mapping method based on occupancy grid
model and sample sets
[J]. J4, 2011, 45(5): 794-798.
[8] CHEN Jia-Gan, HE Yan, JIANG Jing-Ping. Improved FastSLAM algorithm based on importance weight smoothing[J]. J4, 2010, 44(8): 1454-1459.
[9] XU Sheng-Lin, LIU Yan-Na. Modeling of biped robot by SimMechanics[J]. J4, 2010, 44(7): 1361-1367.
[10] MEI Gong, ZHANG Zhi-Feng, LAI Huan-Huan. Continuoustime based optimized scheduling of production process[J]. J4, 2010, 44(7): 1423-1427.
[11] BO Hua-Dong, WANG Ji-Cong, XIE Bin, HU Shi-Fang, LIU Ji-Lin. Data processing method of time-of-flight 3D imaging camera[J]. J4, 2010, 44(6): 1049-1056.
[12] WANG Li, XIONG Rong, CHU Jian, et al. Fuzzy evaluation based exploring planning for map building in unknown environment[J]. J4, 2010, 44(2): 253-258.