Please wait a minute...
J4  2010, Vol. 44 Issue (8): 1441-1448    DOI: 10.3785/j.issn.1008-973X.2010.08.002
    
Robust adaptive dynamic surface control of electro-hydraulic
proportional system
BAI Han, GUAN Cheng
College of Mechanical and Energy Engineering, Zhejiang University, Hangzhou 310027,  China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A robust adaptive dynamic surface control method was presented for a singlerod electrohydraulic actuator with unknown deadzone. By introducing a novel description of general nonlinear deadzone, the proposed scheme was extended to overcome the effect of deadzone. The uncertain deadzone model was transformed into a linear system with a timevarying gain and an uncertainty term. The timevarying gain of deadzone model was treated by using a robust control method, and the unknown bound of deadzone model uncertainty was estimated online. Furthermore, the backstepping design was simplified by utilizing dynamic surface control, and by combining a simple robust method, the electrohydraulic proportional systems controller and adaptation laws for uncertain parameters were presented. The proposed control scheme is simple and insensitive to parameter and model uncertainties. Experimental results show that the nonlinear control algorithm has a good performance for the tracking task in the presence of unknown deadzone of proportional directional valve.



Received: 04 November 2008      Published: 21 September 2010
CLC:  TP 271  
Cite this article:

BAI Han, GUAN Cheng. Robust adaptive dynamic surface control of electro-hydraulic
proportional system. J4, 2010, 44(8): 1441-1448.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2010.08.002     OR     http://www.zjujournals.com/eng/Y2010/V44/I8/1441


电液比例系统鲁棒自适应动态表面控制

对基于语义网络的产品建模及配置方案的搜索方法进行集成研究,以提高产品配置设计的效率.在相关本体的基础上,建立了基于语义网络的产品模型结构,并据此解析用户所输入的查询语句.基于语义网络的产品模型提供一种定量与定性相结合的一致化的设计实例与需求的表达方式.进一步通过产品的语义网络模型可以获取设计需求的隐含条件,使得需求在设计方案的搜索匹配过程中被更充分地考虑.配置设计方案的搜索则首先利用基于语义网络的推理技术与本体语言RDFS构造待求配置设计问题的语义网络片断,然后通过语义搜索与匹配度计算排序从设计实例库中获取符合当前需求配置设计方案.同时,通过注塑机螺杆为实例的应用证明了基于语义网络的产品模型在支持配置选型设计方案搜索方面的有效性与实用性.相对于传统的产品模型而言,基于语义网络的产品模型更关注属性之间的内部联系,经实例验证基于语义网络的产品模型使得配置设计过程更符合用户的实际需求.

[1] ALLEYNE A, HEDRICK J K. Nonlinear adaptive control of active suspensions [J]. IEEE Transactions on Control System Technology, 1995, 3(1): 94101.
[2] ALLEYNE A, LIU R. A simplied approach to force control for electrohydraulic systems [J]. Control Engineering Practice, 2000, 8(12): 13471356.
[3] LIU R, ALLEYNE A. Nonlinear force/pressure tracking of an electrohydraulic actuator [J]. ASME Journal of Dynamic Systems, Measurement, and Control, 2000, 122(3): 232237.
[4] YAO B, BU F, CHIU G. Nonlinear adaptive robust control of electrohydraulic servo systems with discontinuous projections [C]∥ Proceedings of the IEEE Decision and Control. Piscataway: IEEE, 1998: 22652270.
[5] YAO B, BU F, REEDY J, et al. Adaptive robust motion control of singlerod hydraulic actuators: theory and experiments [J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(1): 7991.
[6] SWAROOP D, GERDES J C, YIP P P, et al. Dynamic surface control of nonlinear systems [C]∥ Proceedings of the American Control Conference. Albuquerque: IEEE, 1997: 30283034.
[7] DURAISWAMY S, GEORGE T, CHIU C. Nonlinear adaptive nonsmooth dynamic surface control of electrohydraulic systems [C]∥Proceedings of the American Control Conference. Denver: IEEE, 2003: 32873292.
[8] ZENG Hairong, SEPEHRI N. Dynamic surface control of cooperating hydraulic manipulators in the presence of Friction [C]∥Proceedings of the 2007 American Control Conference. New York: IEEE, 2007: 9499.
[9] WEI D Q, LUO X S, WANG B H, et al. Robust adaptive dynamic surface control of chaos in permanent magnet synchronous motor [J]. Physics Letters A, 2007, 363(1): 7177.
[10] BU F, YAO B. Nonlinear adaptive robust control of hydraulic actuators regulated by proportional directional control valves with deadband and nonlinear flow gains [C]∥Proceedings of the American Control Conference. Chicago: IEEE, 2000: 41294133.
[11] WEI J H, GUAN C. Derivation and integral sliding mode variable structure control of hydraulic velocity tracking system [J]. Chinese Journal of Mechanical Engineering, 2005, 18(2): 224227.
[12] 张海涛,何清华,张新海,等. 机器人液压挖掘机运动系统的建模与控制[J]. 机器人,2005, 27(2): 113117.
ZHANG Haitao, HE Qinghua, ZHANG Xinhai, et al. Modeling and control of the motion system of a hydraulic robotic excavator [J]. Robot, 2005, 27(2): 113117.
[13] TAO G, KOKOTOVIC P V. Adaptive sliding control of plants with unknown deadzone [J]. IEEE Transactions on Automatic Control, 1994, 39(1): 5968.
[14] RASTKO R, FRANK L. Deadzone compensation in motion control systems using neural networks [J]. IEEE Transactions on Automatic Control, 2000, 45(4): 602613.
[15] ZHOU J, WEN C, ZHANG Y. Adaptive output control of nonlinear systems with uncertain deadzone nonlinearity [J]. IEEE Transactions on Automatic Control, 2006, 51(3): 504511.
[16] WANG X S, HONG H, SU C Y. Robust adaptive control a class of nonlinear systems with an unknown deadzone [J]. Automatica, 2004, 40(3): 407413.
[17] ZHANG T P, GE S S. Adaptive neural control of MIMO nonlinear state timevarying delay systems with unknown deadzones and gain signs [J]. Automatica, 2007, 43(6): 10211033.
[18] ZHANG T P, GE S S. Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form [J]. Automatica,2008, 44(7): 18951903.
[19] GUAN C, PAN S X. Nonlinear adaptive robust control of singlerod electrohydraulic actuator with unknown nonlinear parameters [J]. IEEE Transactions on Control System Technology, 2008, 16(3): 434445.
[20] LEWIS F L, TIM W K, WANG L Z, et al. Deadzone compensation in motion control systems using adaptive fuzzy logic control [J]. IEEE Transactions on Control System Technology, 1999, 7(6): 731741.
[21] TAWARE A, TAO G, TEOLIS C. Design and analysis of a hybrid control scheme for sandwich nonsmooth nonlinear systems [J]. IEEE Transactions on Automatic Control, 2002, 47(1): 145150.
[22] SALARIEH H, SHAHROKHI M. Adaptive synchronization of two different chaotic systems with time varying unknown parameters [J]. Chaos, Solitons & Fractals,2008, 37(1): 125136.
[23] WANG D, HUANG J. Neural networkbased adaptive dynamic surface control for a class of uncertain nonlinear systems in strictfeedback form [J]. IEEE Transactions on Neural Networks, 2005, 16(1): 195202.

[1] YU Miao, WANG Jia-sen, QI Dong-lian. Output-feedback adaptive learning control with unknown control direction[J]. J4, 2013, 47(8): 1424-1430.
[2] CHEN Li, YANG Ying-chun. Emotional speaker recognition based on similar neighbor phenomenon[J]. J4, 2012, 46(10): 1790-1795.
[3] ZHANG Lei, WU Yi-jie, WANG Bin, LIU Xiao-liang. Multi-objective optimization method of spatial flexiblecomponent
based on orthogonal tests
[J]. J4, 2012, 46(8): 1419-1423.
[4] ZHANG Lei, WU Yi-jie, LI Jia-qi, WANG Bin, LIU Xiao-liang. Variable magnetic permeability self-sensing model of
GMM based on dynamic coil impedance measurement
[J]. J4, 2011, 45(10): 1726-1731.
[5] HU Xu-xiao, PAN Xiao-hong, HE Wei, CHEN Gang. Step by step fitting algorithm for multi-order exponential function[J]. J4, 2010, 44(12): 2365-2369.
[6] BAI Han, GUAN Cheng, BO Shuang-Jia. Fuzzy decision based sliding mode robust adaptive control for bulldozer[J]. J4, 2009, 43(12): 2178-2185.