Computer and Control Engineering |
|
|
|
|
A super-wide-range parameter chaotic system with coexisting chaotic attractor |
Chang-biao XU( ),Zhou LI |
College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China |
|
|
Abstract Aiming at obtaining a chaotic system with a super wide parameter range and coexisting attractors, a novel chaotic system with coexisting two-wing and four-wing attractors was constructed. There are seven items in each system state equation, of which there is only one nonlinear item. This nonlinear item is composed of the product of other two state variables. The stability of the system, the sensitivity of the system characteristics to parameter variation and the coexisting characteristics of attractors against the super-wide-range system parameter were analyzed. Results showed that the system characteristics had a strong sensitivity when parameter a was slightly changed, and the system had the characteristics of coexistence of two isolated two-wing chaotic attractors and one four-wing chaotic attractor when only the initial value was changed, and the system had coexisting chaotic attractors namely two isolated two-wing chaotic attractors and one four-wing chaotic attractor for parameter d∈(0, 2×104]. In addition, a hardware circuit of the system was designed and circuit simulation was conducted by Multisim. The existence of coexisting attractors under the wide variation range of parameters was further verified.
|
Received: 05 July 2018
Published: 13 August 2019
|
|
具有共存混沌吸引子的超大范围参数混沌系统
为了使参数在超大范围内变化时系统均具有共存吸引子,构建新型的双翼与四翼吸引子共存的混沌系统. 系统的状态方程共有7项,在每个状态方程中只有1个非线性项,且此非线性项是由另外2个状态变量的乘积组成的. 分析系统的稳定性、系统特性对参数变化的敏感性、系统参数在超大范围内变化时吸引子的共存特性等. 研究结果表明,在参数α作微小变化时,系统特性具有较强的敏感性;当仅改变初始值的大小时,系统具有2个孤立双翼混沌吸引子与1个四翼混沌吸引子共存的特性;当参数d∈(0, 2×104]时,系统同样具有混沌吸引子,且均具有共存的2个孤立双翼混沌吸引子与1个四翼混沌吸引子. 此外,设计系统的硬件电路,利用Multisim进行电路仿真,进一步验证参数在超大范围内变化时系统中共存吸引子的存在性.
关键词:
混沌系统,
超大范围,
多重共存吸引子,
敏感性,
电路实现
|
|
[1] |
林书庆, 江宁, 王超, 等 基于动态混沌映射的三维加密正交频分复用无源光网络[J]. 物理学报, 2018, 67 (2): 282- 290 LIN Shu-qing, JIANG Ning, WANG Chao, et al Three-dimensional encrypted orthogonal frequency division multiplexing passive optical network based on dynamic chaotic mapping[J]. Journal of Physics, 2018, 67 (2): 282- 290
|
|
|
[2] |
刘乐柱, 张季谦, 许贵霞, 等 一种基于混沌系统部分序列参数辨识的混沌保密通信方法[J]. 物理学报, 2014, 63 (1): 24- 29 LIU Le-zhu, ZHANG Ji-qian, XU Gui-xia, et al A chaotic secure communication method based on partial sequence parameter identification of chaotic system[J]. Journal of Physics, 2014, 63 (1): 24- 29
doi: 10.3969/j.issn.1672-7940.2014.01.005
|
|
|
[3] |
VAIDYANATHAN S Adaptive control of a chemical chaotic reactor[J]. International Journal of Pharmtech Research, 2015, 8 (3): 377- 382
|
|
|
[4] |
LORENZ N Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20 (1): 130- 141
|
|
|
[5] |
张晓丹, 高成 基于奇函数的一类四维四翼混沌系统设计与电路实现[J]. 北京科技大学学报, 2014, (5): 680- 687 ZHANG Xiao-dan, GAO Cheng Design and circuit implementation of a class of four-dimensional four-wing chaotic systems based on odd functions[J]. Journal of Beijing University of Science and Technology, 2014, (5): 680- 687
|
|
|
[6] |
PHAM V T, JAFARI S, VOLOS C, et al Different families of hidden attractors in a new chaotic system with variable equilibrium[J]. International Journal of Bifurcation and Chaos, 2017, 27 (9): 1750138
|
|
|
[7] |
NJITACKE Z T, KENGNE J, NEGOU A N Dynamical analysis and electronic circuit realization of an equilibrium free 3D chaotic system with a large number of coexisting attractors[J]. Optik: International Journal for Light and Electron Optics, 2016, 130: 356- 364
|
|
|
[8] |
KENGNE J, SIGNING V R F, CHEDJOU J C, et al Nonlinear behavior of a novel chaotic jerk system: anti-monotonicity, crises, and multiple coexisting attractors[J]. International Journal of Dynamics and Control, 2018, 6 (2): 468- 485
|
|
|
[9] |
张晓丹, 王启立 一类分数阶超混沌系统及其在扩频通信中的应用[J]. 北京科技大学学报, 2015, (5): 668- 675 ZHANG Xiao-dan, WANG Qi-li A class of fractional hyper-chaotic systems and their applications in spread spectrum communication[J]. Journal of Beijing University of Science and Technology, 2015, (5): 668- 675
|
|
|
[10] |
郑广超, 刘崇新, 王琰 一种具有隐藏吸引子的分数阶混沌系统的动力学分析及有限时间同步[J]. 物理学报, 2018, (5): 30- 35 ZHENG Guang-chao, LIU Chong-xin, WANG YAN Dynamic analysis and finite time synchronization of fractional order chaotic systems with hidden attractors[J]. Journal of Physics, 2018, (5): 30- 35
|
|
|
[11] |
ZHANG S, ZENG Y, LI Z, et al Generating one to four-wing hidden attractors in a novel 4D no-equilibrium chaotic system with extreme multistability[J]. Chaos, 2018, 28 (1): 013113
|
|
|
[12] |
CHEN Z, WEN G, ZHOU H, et al Generation of grid multi-scroll chaotic attractors via hyperbolic tangent function series[J]. Optik: International Journal for Light and Electron Optics, 2016, 130: 594- 600
|
|
|
[13] |
张国山, 胡雪兰 具有恒Lyapunov指数谱的新三维混沌系统分析与电路实现[J]. 大学物理, 2016, 35 (3): 34- 39 ZHANG Guo-shan, HU Xue-lan Analysis and circuit implementation of a new three-dimensional chaotic system with constant Lyapunov exponent spectrum[J]. College Physics, 2016, 35 (3): 34- 39
|
|
|
[14] |
LI C B, WANG H K, CHEN S A novel chaotic attractor with constant Lyapunov exponent spectrum and its circuit implementation[J]. Acta Physica Sinica, 2010, 59 (2): 783- 791
|
|
|
[15] |
贾红艳, 陈增强, 袁著祉 一个大范围超混沌系统的生成和电路实现[J]. 物理学报, 2009, 58 (7): 4469- 4476 JIA Hong-yan, CHEN Zeng-qiang, YUAN Zhu-zhi Generation and circuit implementation of a large-scale hyper-chaotic system[J]. Journal of Physics, 2009, 58 (7): 4469- 4476
doi: 10.3321/j.issn:1000-3290.2009.07.016
|
|
|
[16] |
梅蓉, 陈谋 一类超大范围超混沌系统的动力学分析和电路实现[J]. 四川大学学报:工程科学版, 2012, 44 (5): 171- 175 MEI Rong, CHEN Mou Dynamic analysis and circuit implementation of a class of super-large scale hyper-chaotic systems[J]. Journal of Sichuan University: Engineering Science Edition, 2012, 44 (5): 171- 175
|
|
|
[17] |
ZHANG L A novel 4-D butterfly hyperchaotic system[J]. Optik - International Journal for Light and Electron Optics, 2017, 131: 215- 220
doi: 10.1016/j.ijleo.2016.11.083
|
|
|
[18] |
史传宝, 王光义, 臧寿池 一个新的混沌系统及其共存吸引子的研究[J]. 杭州电子科技大学学报, 2017, 37 (4): 1- 5 SHI Chuan-bao, WANG Guang-yi, ZANG Shou-chi A new chaotic system and its coexistence attractor[J]. Journal of Hangzhou University of Electronic Science and Technology, 2017, 37 (4): 1- 5
|
|
|
[19] |
雷腾飞, 刘彦芬, 陈众起, 等 一类具有吸引子共存新混沌系统的动力学分析、电路仿真及应用[J]. 曲阜师范大学学报:自然科学版, 2017, 43 (3): 35- 43 LEI Teng-fei, LIU Yan-fen, CHEN Zhong-qi, et al Dynamic analysis, circuit simulation and application of a new chaotic system with attractor co-existence[J]. Journal of Qufu Normal University: Natural Science Edition, 2017, 43 (3): 35- 43
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|