Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (5): 954-962    DOI: 10.3785/j.issn.1008-973X.2020.05.013
Mechanical Engineering     
Multi-dimensional hierarchical remanufacturability evaluation method for end-of-life mechanical parts
Xiu-fen ZHANG1,2,3(),Yun-fei GAO1
1. College of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2. College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
3. Canny Elevator Co. Ltd, Suzhou 215213, China
Download: HTML     PDF(1053KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A multi-dimensional hierarchical remanufacturability evaluation model and method was proposed to solve the problems of ignoring the influence of recycling, selling, policy environment and social environment as well as the complexity and coupling caused by multiple indexes in existing remanufacturability evaluation methods. By analyzing the task flow of end-of-life product remanufacturing system, 22 influence factors were extracted, and then a multi-dimensional hierarchical remanufacturing evaluation model was constructed with technology, economy and environment as key efficiency indexes. An index quantification method based on expert fuzzy evaluation method was proposed to simplify the difficulty of index quantification. The index weight was calculated by using the structural entropy weight method, in order to take both subjective and objective factors into account, and sensitivity analysis was carried out by using OAT (One-At-a-Time) method. A piecewise hierarchical comprehensive remanufacturability evaluation method of end-of-life mechanical parts was proposed based on piecewise weighted rank sum ratio, in order to overcome the complexity and coupling problems caused by multiple indexes. The case study of the main parts of the Passat B5 engine such as cylinder block, cylinder head, crankshaft, connecting rod, shows that the remanufacturability of connecting rod is the best and that of cylinder head is the worst, which verifies the effectiveness and feasibility of the proposed method.



Key wordsend-of-life mechanical parts      remanufacturability      evaluation      rank-sum ratio      sensitivity analysis     
Received: 09 April 2019      Published: 05 May 2020
CLC:  TH 17  
Cite this article:

Xiu-fen ZHANG,Yun-fei GAO. Multi-dimensional hierarchical remanufacturability evaluation method for end-of-life mechanical parts. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 954-962.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.05.013     OR     http://www.zjujournals.com/eng/Y2020/V54/I5/954


退役机械零部件多维递阶再制造性评价方法

针对再制造性评价忽略回收环节、出售环节、政策环境、社会环境等影响及其多指标造成的复杂性和耦合性的问题,提出多维递阶再制造性评价模型和方法. 通过分析退役机械零部件再制造系统任务流,提取22个影响因子,以技术、经济和环境为关键效能指标体系构建退役机械零部件多维递阶再制造性评估模型. 针对指标难以量化的问题,提出基于模糊评价法的指标量化方法,利用结构熵权法计算指标权重,以兼顾主客观性,并应用OAT法进行敏感性分析. 提出基于分段加权秩和比法的退役机械零部件再制造性分段递阶综合评价法以克服多指标造成的复杂性和耦合性问题. 以帕萨特B5发动机为例,对汽缸体、缸盖、曲轴、连杆等主要零部件进行再制造性优劣排序和分档,结果显示连杆的再制造性最佳,缸盖的再制造性最差,与实际分析结果基本一致,验证了所提方法的有效性和可行性.


关键词: 退役机械零部件,  再制造性,  评价,  秩和比,  敏感性分析 
Fig.1 Task flow analysis of remanufacturing system for end-of-life machinery parts
Fig.2 Remanufacturability evaluation model of end-of-life machinery parts
Fig.3 Piecewise hierarchical comprehensive evaluation method
Fig.4 Main parts of Passat B5 engine
评估对象 sij RSR1
t1 t2 t3 t4 t5 t6 t7 t8
A 5 1 2 1 1 5 2 2 2.402
B 4 2 1 3 3 4 1 1 2.409
C 2 4 5 4 5 2 4 5 3.862
D 1 5 4 2 2 1 5 4 2.965
E 3 3 3 5 4 3 3 3 3.362
Tab.1 Rank results and weighted rank sum ratio of technical indexes of machinery parts
评估对象 sij RSR2
e1 e2 e3 e4 e5 e6 e7
A 4 3 1 2 1 1 3 2.107
B 3 2 3 1 2 2 5 2.764
C 2 5 4 5 5 5 1 3.730
D 1 4 2 3 3 3 2 2.607
E 5 1 5 4 4 3 4 3.620
Tab.2 Rank results and weighted rank sum ratio of economic indexes of machinery parts
评估对象 sij RSR3
c1 c2 c3 c4 c5 c6 c7
A 4 1 4 1 1 4 3 2.609
B 5 3 5 4 3 5 5 4.294
C 1 5 1 5 5 1 1 2.704
D 2 4 2 2 2 2 2 2.304
E 3 2 3 3 4 3 4 3.089
Tab.3 Rank results and weighted rank sum ratio of environmental indexes of machinery parts
评估对象 tij RSR
技术 经济 环境
A 1 1 2 1.203
B 2 3 5 3.008
C 5 5 3 4.594
D 3 2 1 2.195
E 4 4 4 4.000
Tab.4 Rank results and weighted rank sum ratio of total indexes of main parts of Passat B5
Fig.5 Results of absolute average change rate of index weight
评估对象 RSR f f R $\bar R$ pi P
A 1.203 1 1 1 1 0.20 4.16
D 2.195 1 2 2 2 0.40 4.75
B 3.008 1 3 3 3 0.60 5.25
E 4.000 1 4 4 4 0.80 5.84
C 4.594 1 5 5 5 0.95 6.64
Tab.5 Probit calculation results and RSR distribution of machinery parts
等级 P RSRfit范围 RSRfit 分档
再制造性优秀 ≥6.5 ≥4.642 4.838 C
再制造性良好 [5.0,6.5) [2.540,4.642) 3.717
2.890
E
B
再制造性合格 [3.5,5.0) [0.439,2.540) 2.190
1.363
D
A
不可再制造 <3.5 <0.439 ? ?
Tab.6 Feasibility classification of remanufacturing of machinery parts
[1]   LIU C, CAI W, DINOLOV O, et al Emergy based sustainability evaluation of remanufacturing machining systems[J]. Energy, 2018,150, 670- 680
[2]   AMEZQUITA T, HAMMOND R, SALAZAR M, et al. Characterizing the remanufacturability of engineering systems [C]// Proceedings of the 1995 ASME Advances in Design Automation Conference. NewYork: ASME, 1995: 271-278.
[3]   BRAS B, HAMMOND R. Towards design for remanufacturing-metrics for assessing remanufacturability [C]// Proceedings of the 1st International Workshop on Reuse, Eindhoven. Netherlands: [s.n.], 1996: 11-13.
[4]   YANG S S, ONG S K, NEE A Y C A decision support tool for product design for remanufacturing[J]. Procedia CIRP, 2016, 40: 144- 149
doi: 10.1016/j.procir.2016.01.085
[5]   DU Y B, CAO H J, LIU F, et al An integrated method for evaluating the remanufacturability of used machine tool[J]. Journal of Cleaner Production, 2012, 20: 82- 91
doi: 10.1016/j.jclepro.2011.08.016
[6]   CHAKRABORTY K, MONDAL S, MUKHERJEE K Analysis of product design characteristics for remanufacturing using fuzzy AHP and axiomatic design[J]. Journal of Engineering Design, 2017, 28 (5): 338- 368
doi: 10.1080/09544828.2017.1316014
[7]   MAZHAR M I, KARA S, KAEBERNICK H Reuse potential of used parts in consumer products: assessment with Weibull analysis[J]. Production Engineering and Computers, 2004, 6 (7): 113- 118
[8]   杜彦斌, 廖兰 基于失效特征的机械零部件可再制造度评价方法[J]. 计算机集成制造系统, 2015, 21 (1): 135- 142
DU Yan-bin, LIAO Lan Remanufacturability evaluation method of mechanical parts based on failure features[J]. Computer Integrated Manufacturing Systems, 2015, 21 (1): 135- 142
[9]   王金龙, 张元良, 赵清晨, 等 再制造毛坯疲劳损伤临界阈值及可再制造性判断研究[J]. 机械工程学报, 2017, 53 (5): 41- 49
WANG Jin-long, ZHANG Yuan-liang, ZHAO Qing-chen, et al Study of fatigue defect critical threshold of remanufacturing cores and judgment of remanufacturability based on fatigue defect[J]. Journal of Mechanical Engineering, 2017, 53 (5): 41- 49
doi: 10.3901/JME.2017.05.041
[10]   陈亮, 武玲玲, 张瑞秋, 等 基于系统工程视角的工程制图教学改革与实践[J]. 图学学报, 2018, 39 (6): 1214- 1219
CHEN Liang, WU Ling-ling, ZHANG Rui-qiu, et al The teaching reform and practice of engineering drawing based on the system engineering[J]. Journal of Graphics, 2018, 39 (6): 1214- 1219
[11]   田凤调. 秩和比法及其应用[M]. 北京: 中国统计出版社, 1993.
[12]   钱彦岭, 李廷鹏, 李磊, 等 维修系统评价指标体系及确定方法[J]. 系统工程与电子技术, 2014, 36 (6): 1088- 1095
QIAN Yan-ling, LI Ting-peng, LI Lei, et al Evaluation index framework of maintenance system and its selection method[J]. Systems Engineering and Electronics, 2014, 36 (6): 1088- 1095
doi: 10.3969/j.issn.1001-506X.2014.06.12
[13]   刘渤海, 徐滨士, 史佩京 再制造综合评价指标体系的设计研究[J]. 检验检疫学刊, 2010, 20 (2): 53- 56
LIU Bo-hai, XU Bin-shi, SHI Pei-jing A design for integrated assessment indexing system of remanufacturing[J]. Journal of Inspection and Quarantine, 2010, 20 (2): 53- 56
doi: 10.3969/j.issn.1674-5354.2010.02.017
[14]   刘赟, 徐滨士, 史佩京, 等 废旧产品再制造性评估指标[J]. 中国表面工程, 2011, 24 (5): 94- 99
LIU Yun, XU Bin-shi, SHI Pei-jing, et al Assessment indexes of used products remanufacturability[J]. China Surface Engineering, 2011, 24 (5): 94- 99
doi: 10.3969/j.issn.1007-9289.2011.05.019
[15]   刘见中, 沈春明, 雷毅, 等 煤矿区煤层气与煤炭协调开发模式与评价方法[J]. 煤炭学报, 2017, 42 (5): 1221- 1229
LIU Jian-zhong, SHEN Chun-ming, LEI Yi, et al Coordinated development mode and evaluation method of coalbed methane and coal in coal mine area in China[J]. Journal of China Coal Society, 2017, 42 (5): 1221- 1229
[16]   程启月 评测指标权重确定的结构熵权法[J]. 系统工程理论与实践, 2010, 30 (7): 1225- 1228
CHENG Qi-yue Structure entropy weight method to confirm the weight of evaluating index[J]. Systems Engineering-Theory and Practice, 2010, 30 (7): 1225- 1228
doi: 10.12011/1000-6788(2010)7-1225
[17]   赵小娟, 叶云, 周晋皓, 等 珠三角丘陵区耕地质量综合评价及指标权重敏感性分析[J]. 农业工程学报, 2017, 33 (8): 226- 235
ZHAO Xiao-juan, YE Yun, ZHOU Jin-hao, et al Comprehensive evaluation of cultivated land quality and sensitivity analysis of index weight in hilly region of Pearl River Delta[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33 (8): 226- 235
doi: 10.11975/j.issn.1002-6819.2017.08.031
[18]   付学谦, 陈皓勇 基于加权秩和比法的电能质量综合评估[J]. 电力自动化设备, 2015, 35 (1): 128- 132
FU Xue-qian, CHEN Hao-yong Comprehensive power quality evaluation based on weighted rank sum ration method[J]. Electric Power Automation Equipment, 2015, 35 (1): 128- 132
[19]   徐滨士, 董世运, 史佩京 中国特色的再制造零件质量保证技术体系现状及展望[J]. 机械工程学报, 2013, 49 (20): 84- 90
XU Bin-shi, DONG Shi-yun, SHI Pei-jing States and prospects of China characterised quality guarantee technology system for remanufactured parts[J]. Journal of Mechanical Engineering, 2013, 49 (20): 84- 90
doi: 10.3901/JME.2013.20.084
[20]   刘长赛, 王玉江, 盛忠起, 等 曲轴维修与再制造现状与展望[J]. 材料导报, 2018, 32 (1): 141- 148
LIU Chang-sai, WANG Yu-jiang, SHENG Zhong-qi, et al State-of-arts and perspectives of crankshaft repair and remanufacture[J]. Materials Reports, 2018, 32 (1): 141- 148
doi: 10.11896/j.issn.1005-023X.2018.01.018
[1] Bin ZHU,Nan JIANG,Chuan-bo ZHOU,Yong-sheng JIA,Xue-dong LUO,Ting-yao WU. Blasting seismic effect of buried cast iron pipeline in silty clay layer[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 500-510.
[2] Ai-min ZHOU,Hong-bin LIU,Shu-tao ZHANG,Jin-yan OUYANG. Uncertainty reasoning model of subjective and objective aesthetic evaluation of car[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 419-429.
[3] Kai-yuan SU,Zhi-gang XU,Jian-feng ZHU,Wei-min LIU. Dismantling equipment design for scrap product based on Petri net[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1795-1804.
[4] Wei CHEN,Xue-jiao LIU,Ying-jie XIA. Multi-factor reputation evaluation model based on analytic hierarchy process in vehicle Ad-hoc networks[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 722-731.
[5] Yi-fan GU,Li-ping WANG,Xu DING,Zhi-yu WANG,Jiong-jiong MO,Fa-xin YU. Active-passive joint measurement and evaluation method for precision of noise test system[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 574-580.
[6] Ai-min ZHOU,Cai-xia ZHOU,Jin-yan OUYANG,Shu-tao ZHANG. Model of synthetic evaluation on interface stylistic beauty based on moderately standardized of index[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2273-2285.
[7] Teng-yi HUANG,Jin ZHOU,Yan XU,Fan-xu MENG. Modeling of MR damper based on multi-field coupling analysis and influence of structural parameters[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2001-2008.
[8] Guang-zhu WANG,Jian-hong CHEN,Xi-liang HONG,Xiao-rong WANG,Qiang-feng CHEN,De-ren SHENG,Wei LI. Exergoenvironmental evaluation for combined cycle power generation system based on life cycle assessment[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 972-980.
[9] Feng CHENG,Dong ZHANG,Shuo TANG. Aerodynamics/propulsion coupled modeling and analysis of hypersonic vehicle within wide speed range[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 1006-1018.
[10] Jin ZHOU,Tian-yu GAO,Yi CHEN,Hong-hao XI. Model updating of dual-rotor decanter centrifuge with dynamic test[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 241-249.
[11] WANG Rui, LI Yan-lai, ZHU Jiang-hong, YANG Yi. Improved FMEA method for risk evaluation considering expert consensus[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1058-1067.
[12] REN Song, OUYANG Xun, WU Jian-xun, CHEN Fan, WANG Liang, CHEN Jie. Elastic-swelling analytical model of anhydrite rock considering time-dependent effect[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 896-905.
[13] HAO Nan-nan, ZHENG Bing, ZHANG Chao-yong. Application of gray fuzzy integral in multi-objective decisions[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 663-673.
[14] BAO Teng-fei, LI Jian-ming, ZHAO Jin-lei. Strain transfer analysis between embedded plastic optical fibers and concretes[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2342-2348.
[15] LIU Zhen, WU Ze-hui, CAO Yan, WEI Qiang. Software vulnerable code reuse detection method based on vulnerability fingerprint[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2180-2190.