An exergoenvironmental analysis model based on life cycle assessment (LCA) and Eco-indicator99 was established to explore the environmental cost formation process in the power production process, taking the 9FA gas-steam combined cycle unit as the research object. The environmental impacts of each component throughout the life cycle were clarified, and the environmental impact factors affecting the component output products were divided, based on the exergoenvironmental analysis of system components. The formation process of the environmental impact of the combined cycle unit and the contribution of individual component to the overall system environmental impact were revealed from the component level. Results showed that the environmental impact of the component itself was small for most components, and the environmental impact caused by the damage constituted the main environmental impact of the component, but the environmental impact of the pollutant reduction in the combustion chamber was greater than that caused by the damage. The environmental impact of electricity production from the combined cycle power plant was 5.80 mPts/MJ, which was nearly half of the environmental impact of electricity production from " ultra-low emission” coal-fired power plants.
Guang-zhu WANG,Jian-hong CHEN,Xi-liang HONG,Xiao-rong WANG,Qiang-feng CHEN,De-ren SHENG,Wei LI. Exergoenvironmental evaluation for combined cycle power generation system based on life cycle assessment. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 972-980.
Tab.7Exergoenvironmental analyses of gas-steam combined cycle power generation system at compo-nent level
参数
数值
参数
数值
BPF,tot/(mPts·s?1)
?1 226.41
Ytot/(mPts·s?1)
2.749
BF,tot/(mPts·s?1)
3 687.92
BD,tot/(mPts·s?1)
1 412.99
BP,tot/(mPts·s?1)
2 247.04
bF,tot/(mPts·s?1)
5.40
BL,tot/(mPts·s?1)
217.51
bP,tot/(mPts·MJ?1)
5.80
Tab.8Exergoenvironmental analyses at system level
[1]
MEYER L, TSATSARONIS G, BUCHGEISTER J, et al Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems[J]. Energy, 2009, 34 (1): 75- 89
doi: 10.1016/j.energy.2008.07.018
[2]
LAZZARETTO A A critical comparison between thermoeconomic and emergy analyses algebra[J]. Energy, 2009, 34 (12): 2196- 2205
doi: 10.1016/j.energy.2008.10.020
[3]
KOORNNEEF J, KEULEN T V, FAAIJ A, et al Life cycle assessment of a pulverized coal power plant with post-combustion capture, transport and storage of CO2[J]. International Journal of Greenhouse Gas Control, 2008, 2 (4): 448- 467
doi: 10.1016/j.ijggc.2008.06.008
[4]
TURCONI R, O’DWYER C, FLYNN D, et al Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: life cycle assessment for Ireland[J]. Applied Energy, 2014, 131 (9): 1- 8
[5]
MEYER L. Exergiebasierte untersuchung der entstehung von umweltbelastungen in energieumwandlungsprozessen auf komponentenebene: exergo?kologische analyse [D]. Darmstadt: Universit?t Darmstadt, 2006.
[6]
PETRAKOPOULOU F, BOYANO A, CABRERA M, et al Exergoeconomic and exergoenvironmental analyses of a combined cycle power plant with chemical looping technology[J]. International Journal of Greenhouse Gas Control, 2011, 5 (3): 475- 482
doi: 10.1016/j.ijggc.2010.06.008
[7]
AHMADI P, DINCER I, ROSEN M A Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration[J]. Energy Conversion and Management, 2012, 64: 447- 453
doi: 10.1016/j.enconman.2012.06.001
[8]
AHMADI P, DINCER I Exergoenvironmental analysis and optimization of a cogeneration plant system using multimodal genetic algorithm (MGA)[J]. Energy, 2010, 35 (12): 5161- 5172
doi: 10.1016/j.energy.2010.07.050
[9]
BANERJEE A, TIERNEY M Comparison of five exergoenvironmental methods applied to candidate energy systems for rural villages in developing countries[J]. Energy, 2011, 36 (5): 2650- 2661
doi: 10.1016/j.energy.2011.02.006
[10]
王彦峰, 冯霄 综合考虑资源利用与环境影响的?分析法应用[J]. 中国科学, 2001, 31 (1): 89- 96 WANG Yan-feng, FENG Xiao Application of the enthalpy analysis method to comprehensively consider resource use and environmental impact[J]. Chinese Science, 2001, 31 (1): 89- 96
doi: 10.3969/j.issn.1674-7224.2001.01.012
[11]
戴恩贤, 张新铭 基于?参数的环境影响评价[J]. 重庆大学学报, 2008, (3): 15- 18 DAI En-xian, ZHANG Xin-ming Environmental impact assessment based on radon parameters[J]. Journal of Chongqing University, 2008, (3): 15- 18
[12]
雷菁, 陈菁, 张新铭 基于?参数环境影响评价探讨[J]. 电力科技与环保, 2010, 26 (2): 12- 14 LEI Jing, CHEN Jing, ZHANG Xin-ming Discussion on environmental impact assessment based on radon parameters[J]. Power Science and Technology and Environmental Protection, 2010, 26 (2): 12- 14
doi: 10.3969/j.issn.1674-8069.2010.02.004
[13]
陈清林, 王松平, 尹清华, 等. 基于?概念的能量系统环境效应评价和建模[J]. 工程热物理学报, 2003, 24(6): 92-94. CHEN Qing-lin, WANG Song-ping, YIN Qing-hua, et al. Energy system environmental effect evaluation and modeling strategy based on exergy concept [J]. Journal of Engineering Thermodynamics, 2003, 24(6): 92-94.
[14]
杨勇平, 刘文毅, 郭喜燕, 等. 考虑环境成本的能量系统广义?经济学分析模型[J]. 工程热物理学报, 2004, 25(1): 5-8. YANG Yong-ping, LIU Wen-yi, GUO Xi-yan, et al. Energy system generalized unitary economics analysis model considering environmental costs [J]. Journal of Engineering Thermodynamics, 2004, 25(1): 5-8.
[15]
蒋爱华. 泛?分析方法及其应用研究[D]. 长沙: 中南大学, 2011. JIANG Ai-hua. Extensive exergy analysis method and its application research [D]. Changsha: Central South University, 2011.
[16]
王佼佼. 火电机组烟气余热利用的能源-经济-环境综合评价[D]. 北京: 华北电力大学, 2015. WANG Jiao-jiao. Comprehensive evaluation of energy-economy-environment for waste heat utilization of thermal power unit [D]. Beijing: North China Electric Power University, 2015.
[17]
HONG X L, CHEN J H, LV H, et al Advanced exergoenvironmental evaluation for a coal-fired power plant of near-zero air pollutant emission[J]. Applied Thermal Engineering, 2018, 128: 1139- 1150
doi: 10.1016/j.applthermaleng.2017.08.068
[18]
MORAN M J, SHAPIRO H N, BOETTNER D D, et al. Fundamentals of engineering thermodynamics [M]. 7th edition. New York: Wiley, 2010.
[19]
European Committee for Standardization. Environmental management-life cycle assessment-principles and framework: ISO 14040—2006 [S]. Geneva: International Organization for Standardization, 2006: 1-5.
[20]
KIM S, DALE B E Life cycle inventory information of the united states electricity system[J]. International Journal of Life Cycle Assessment, 2005, 10 (4): 294- 304
doi: 10.1065/lca2004.09.176
[21]
DREYER L C, NIEMANN A L, HAUSCHILD M Z. Comparison of three different LCIA methods: EDIP97, CML2001 and Eco-indicator 99 [J]. The International Journal of Life Cycle Assessment, 2003, 8(4): 191-200.
[22]
GOEDKOOP M J, SPRIENSMA R. The Eco-Indicator 99: a damage oriented method for life cycle impact assessment [J]. Pain, 2001, 11(Suppl. 1): S95.
[23]
LAZZARETTO A, TSATSARONIS G SPECO: a systematic and general methodology for calculating efficiencies and costs in thermal systems[J]. Energy, 2014, 31 (8): 1257- 1289
[24]
李新, 崔献丹, 梁亚楠, 等 中国金属矿产的消费强度与回收潜力分析[J]. 中国人口·资源与环境, 2017, 27 (7): 53- 59 LI Xin, CUI Xian-dan, LIANG Ya-nan, et al Analysis of consumption intensity and recovery potential of metal minerals in China[J]. China Population, Resources and Environment, 2017, 27 (7): 53- 59