Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (9): 1795-1804    DOI: 10.3785/j.issn.1008-973X.2020.09.016
    
Dismantling equipment design for scrap product based on Petri net
Kai-yuan SU1(),Zhi-gang XU1,*(),Jian-feng ZHU1,Wei-min LIU2
1. School of Mechanical Engineering, Shandong University, Jinan 250061, China
2. Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
Download: HTML     PDF(1467KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A method for constructing the function to structure mapping was proposed based on Petri net according to the demand of dismantling equipment in the process of dismantling and recycling scrap products, in order to design the dismantling equipment of product-specific parts. The function to structure mapping was extended, and the analysis of requirement and behavior was added to construct the conceptual design of the requirement to function mapping and the structure design of the function-behavior-structure mapping. The demand domain, functional domain and behavior domain were decomposed and the function surfaces were obtained, then the TRIZ theory was used for innovative design to reconstruct the structural model. The triangular fuzzy numbers were used to compare and evaluate different innovative schemes, and to select the best design scheme. Finally, to realize the mapping of dismantling equipment from demand to function to structure. The scrap bicycle handlebar was selected as the disassembly object, to obtain the design scheme and design the structural model of handlebar dismantling equipment according to the extended mapping model.



Key wordsPetri net      function to structure mapping      dismantling equipment      innovative design      fuzzy evaluation     
Received: 22 August 2019      Published: 22 September 2020
CLC:  TH 122  
Corresponding Authors: Zhi-gang XU     E-mail: 940646398@qq.com;zhgxu@sdu.edu.cn
Cite this article:

Kai-yuan SU,Zhi-gang XU,Jian-feng ZHU,Wei-min LIU. Dismantling equipment design for scrap product based on Petri net. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1795-1804.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.09.016     OR     http://www.zjujournals.com/eng/Y2020/V54/I9/1795


基于Petri网的废旧产品拆卸设备设计

为了设计产品特定零部件的拆卸设备,针对废旧产品在拆卸、回收过程中的拆卸需求,提出基于Petri网构建功-构映射模型的方法. 将功-构映射进行扩展,加入需求与行为分析,构造出需求-功能映射的概念设计和功能-行为-结构映射的结构设计;对需求域、功能域和行为域进行分解,根据得到的功能表面利用TRIZ理论进行创新设计,重构出对应的结构模型;运用三角模糊数对不同创新方案进行对比评价,选出最优设计方案,实现拆卸设备从需求到功能再到结构的映射. 选取废旧自行车把手作为拆卸对象,根据扩展后的映射模型选出设计方案,设计出车把拆卸设备的结构模型.


关键词: Petri网,  功-构映射,  拆卸设备,  创新设计,  模糊评价 
Fig.1 Requirements to function mapping of dismantling equipment
Fig.2 Function to structure mapping of dismantling equipment
Fig.3 Function to behaviors mapping of dismantling equipment
Fig.4 Function to sub-functions mapping of dismantling equipment
Fig.5 Behavior to sub-behavior mapping of dismantling equipment
Fig.6 Behavior to structure mapping of dismantling equipment
Fig.7 Function to structure mapping model of Petri net
Fig.8 Schematic of function to behavior to structure mapping
Fig.9 Extended function to structure mapping model of Petri net
语言变量 取值范围
含义 缩写
非常高的一致性 VH [0.833,1.000]
高度一致性 H [0.667,1.000]
中等高度一致性 MH [0.500,0.833]
中等一致性 M [0.333,0.667]
较低一致性 ML [0.167,0.500]
低一致性 L [0,0.333]
非常低的一致性 VL [0,0.167]
Tab.1 Meaning and range of linguistic variables
Fig.10 Triangular membership functions graph of linguistic variables
指标 维度 指标 维度
C1:新颖性 c2:独创性
c12:范例相关性
C3:相关性 c31:适用性
c32:有效性
C2:可行性 c21:可接受性
c22:可实现性
C4:独特性 c41:明确性
c42:完整性
c43:清晰性
Tab.2 Corresponding dimensions of different evaluation indicators
语言变量 相对重要性值 语言变量 相对重要性值
同等重要 1 非常重要 7
稍微重要 3 极端重要 9
明显重要 5 上述相邻变量的中间值 2、4、6、8
Tab.3 Value of relative importance for different language variables
拆卸方式 拆卸时间/s 拆卸成本
人工拆卸 120 3000~6000元/月
拆卸设备 100 1~10万/套
Tab.4 Demand comparisons of two disassembly methods
Fig.11 Diagram of front wheel and fixing equipment
Fig.12 Diagram of front wheel functional surface
Fig.13 Diagram for joint of handlebar
Fig.14 Diagram for functional surface of handlebar
Fig.15 Dismantling equipment model of handlebar
Fig.16 Diagram for dismantling process of handlebar
指标 方案一 方案二
独创性 L H
范例相关性 ML L
可接受性 H MH
可实现性 H M
适用性 L H
有效性 L H
明确性 L H
完整性 MH H
Tab.5 Evaluation levels of two schemes under different indicators
Fig.17 Comparison of triangular membership functions of two schemes
[1]   韩建升. 基于遗传算法的拆卸序列规划研究[D]. 武汉: 华中科技大学, 2007.
HAN Jian-sheng. Research on disassembly sequence planning based on genetic algorithms [D]. Wuhan: Huazhong University of Science and Technology, 2007.
[2]   SUNG J, JEONG B A heuristic for disassembly planning in remanufacturing system[J]. The Scientific World Journal, 2014, (2014): 1- 10
[3]   JUSTEL D, VIDAL R, CHINNER M. TRIZ applied to innovate in design for disassembly [C] // 13th CIRP International Conference on Life Cycle Engineering. Leuven: CIRP, 2006: 377-382.
[4]   CHEN J L, CHEN W C. TRIZ based eco–innovation in design for active disassembly [C] // 14th CIRP International Conference on Life Cycle Engineering. Tokyo: CIRP, 2007: 83-87.
[5]   刘志峰, 杨明, 张雷 基于TRIZ的可拆卸连接结构设计研究[J]. 中国机械工程, 2010, (7): 852- 859
LIU Zhi-feng, YANG Ming, ZHANG Lei TRIZ based design for disassembly of joint structure[J]. China Mechanical Engineering, 2010, (7): 852- 859
[6]   UMEDA Y, KONDOH S, SHIMOMURA Y, et al Development of design methodology for upgradable products based on function-behavior-state modeling[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2005, 19 (3): 161- 182
doi: 10.1017/S0890060405050122
[7]   谢清. 定制产品功能-结构映射原理、方法及关键技术研究[D]. 杭州: 浙江大学, 2007.
XIE Qing. Research on theories, methods and key technologies of mapping between function domain and structure domain for customization products[D]. Hangzhou: Zhejiang University, 2007.
[8]   杨得玉, 徐志刚, 沈卫东, 等 基于功构映射的拆卸设备设计方法[J]. 中国机械工程, 2019, 30 (11): 1276- 1286
YANG De-yu, XU Zhi-gang, SHEN Wei-dong, et al Dismantling equipment design method based on function to Structure Mapping[J]. China Mechanical Engineering, 2019, 30 (11): 1276- 1286
doi: 10.3969/j.issn.1004-132X.2019.11.003
[9]   SUZUKI T, ZANMA T, INABA A. Learning control of disassembly Petri net: an approach with discrete event system theory [C] // IEEE International Conference on Robotics and Automation. Minneapolis: IEEE, 1996: 184-191.
[10]   GUO X, LIU S, ZHOU M C, et al Disassembly sequence optimization for large-scale products with multiresource constraints using scatter search and Petri nets[J]. IEEE Transactions on Cybernetics, 2015, 46 (11): 1- 12
[11]   ZHAO S E, LI Y L Fuzzy reasoning Petri nets and its application to disassembly sequence decision of products[J]. Control and Decision, 2005, 20 (10): 181- 184
[12]   BAO H P, LEI C H. Disassembly planning and timing through a Petri nets approach [C] // ASME USA International Manufacturing Science and Engineering Conference. Evanston: ASME, 2008: 15-21.
[13]   刘佳, 刘毅 基于优先关系的飞机机载设备维修拆卸CPN模型[J]. 计算机辅助设计与图形学学报, 2011, 23 (2): 323- 330
LIU Jia, LIU Yi A disassembly CPN model for maintenance of airborne equipment with disassembly precedence constraints[J]. Journal of Computer-Aided and Computer Graphics, 2011, 23 (2): 323- 330
[14]   王攀, 程培源, 王威, 等 基于拆卸 Petri 网和混沌粒子群的拆卸序列规划[J]. 机械设计与制造, 2015, (1): 251- 255
WANG Pan, CHEN Pei-yuan, WANG Wei, et al Disassembly sequence planning based on disassembly Petri nets and chaos particle swarm optimization algorithm[J]. Machinery Design and Manufacture, 2015, (1): 251- 255
doi: 10.3969/j.issn.1001-3997.2015.01.068
[15]   陈卓照. 基于可拓Petri网的混合可再生能源烘干设备的设计[D]. 广州: 广东工业大学, 2017.
CHEN Zhuo-zhao. Design of hybrid renewable energy drying equipment based on extension Petri net [D]. Guangzhou: Guangdong University of Technology, 2017.
[16]   FRENCH M J. Conceptual design for engineers second edition [M]. London: The Design Council, 1985.
[17]   宋慧军, 林志航 机械产品概念设计多层次混合映射功能求解框架[J]. 机械工程学报, 2003, 39 (5): 82- 87
SONG Hui-jun, LIN Zhi-hang Hierarchical function solving framework with hybrid mappings in the conceptual design of mechanical products[J]. Journal of Mechanical Engineering, 2003, 39 (5): 82- 87
doi: 10.3321/j.issn:0577-6686.2003.05.016
[18]   曾俊华. 面向产品设计过程的方案评价方法研究[D]. 杭州: 浙江大学, 2005.
ZENG Jun-hua. Research on evaluation method for alternative in product design process[D]. Hangzhou: Zhejiang University, 2005.
[19]   杨金勇 概念设计过程中产品功能的广义定位表达[J]. 机械设计, 2014, 31 (6): 6- 12
YANG Jin-yong Generalized positioning expression of product function in conceptual design process[J]. Journal of Machine Design, 2014, 31 (6): 6- 12
[20]   CHOU J R An ideation method for generating new product ideas using TRIZ, concept mapping, and fuzzy linguistic evaluation techniques[J]. Advanced Engineering Informatics, 2014, 28 (4): 441- 454
doi: 10.1016/j.aei.2014.06.006
[21]   汪焰恩, 魏生民 创新设计的多级模糊综合评价[J]. 计算机工程与应用, 2005, 41 (12): 217- 219
WANG Yan-en, WEI Sheng-min Multilevel fuzzy comprehensive evaluation of innovation design[J]. Computer Engineering and Applications, 2005, 41 (12): 217- 219
doi: 10.3321/j.issn:1002-8331.2005.12.066
[22]   苏开远, 徐志刚, 朱建峰 基于TRIZ的鼠标再制造拆卸设备设计研究[J]. 现代制造工程, 2019, (6): 10- 16
SU Kai-yuan, XU Zhi-gang, ZHU Jian-feng Research on design of mouse remanufacturing disassembly device based on TRIZ[J]. Model Manufacturing Engineering, 2019, (6): 10- 16
[1] XU Rong-bin, SHI Jun, ZHANG Peng-fei, XIE Ying. Similarity measurement of transition mapping relation using Petri net[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1205-1213.
[2] WANG Qing, WEN Li-qing, LI Jiang-xiong, KE Ying-lin, LI Tao, ZHANG Shi-jiong. Modeling and optimization for aircraft final assembly line based on Petri net[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1224-1231.
[3] WANG Cheng-long, LI Cheng, FENG Yi-ping, RONG Gang. Dispatching rule extraction method for job shop scheduling problem[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 421-429.
[4] JI Xiang, GU Xin-jian, DAI Feng, LIU Zheng. BioTRIZ-based product innovative design process[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(1): 35-41.
[5] XU Shan-shan, DONG Li-da, ZHU Dan, ZHU Cheng-cheng. Method to compute minimal siphons in S4PR nets[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(3): 431-441.
[6] LUO Ji-Liang, WANG Fei,SHAO Hui,ZHAO Liang-Xu. Optimal Petri-net supervisor synthesis based on the constraint transformation[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 2051-2056.
[7] LIU Xiao-jian, ZHANG Shu-you, XU Jing-hua. Design change based on network flow Petri net model[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 37-44.
[8] DONG Li-Da, CHENG Xi-Gao, ZHENG Han. Properties research of Petri nets safety place substitution[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(9): 1711-1718.
[9] ZHOU Xiao-Hui, CHEN Chun, XIE Zuo-Hao. Simulation and optimization of printing and dyeing production
process
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1377-1381.
[10] DONG Li-Da, ZHENG Han, CHENG Xi-Gao. Explicitcontroller design for a class of controlled Petri nets with marked graph loops[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(6): 1057-1066.
[11] WANG Li, XIONG Rong, CHU Jian, et al. Fuzzy evaluation based exploring planning for map building in unknown environment[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(2): 253-258.