Please wait a minute...
J4  2014, Vol. 48 Issue (1): 35-41    DOI: 10.3785/j.issn.1008-973X.2014.01.006
    
BioTRIZ-based product innovative design process
JI Xiang1,2, GU Xin-jian1, DAI Feng1, LIU Zheng1
1.Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China;2.The 28th Research
Institute of China Electronics Technology Group Corporation, Nanjing 210007,China
Download:   PDF(2649KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A innovative design process model based on BioTRIZ was proposed according to the relationship-mapping-inversion (RMI) principle in order to address the issue that the biological analogies can not be easily found and transferred into engineering design. The model includes two parts, engineering mapping and biological inversion. In engineering-to-biology mapping process, the design problems were mapped to biological cases and inventive principles by BioTRIZ. In biology-to-engineering inversion process, model boundaries were determined by biological categories and biological scales, and the function model of biological case was established using function basis as model language in order to inverse biological solutions to engineering. The feasibility and effectiveness of the proposed design process model were verified in the design of foldable helmet.



Published: 01 January 2014
CLC:  TH 122  
Cite this article:

JI Xiang, GU Xin-jian, DAI Feng, LIU Zheng. BioTRIZ-based product innovative design process. J4, 2014, 48(1): 35-41.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.01.006     OR     http://www.zjujournals.com/eng/Y2014/V48/I1/35


基于BioTRIZ的产品创新设计过

针对仿生设计中难以找到类比实例以及难以将其转换至工程设计中的问题,根据关系-映射-反演(RMI)的原则提出基于BioTRIZ的创新设计过程模型,其包括工程映射和生物反演2部分.在工程至生物的映射过程中,利用BioTRIZ将设计问题映射至特定生物实例及发明原理;在生物至工程的反演过程中,通过生物维度、生物粒度确定模型边界,以功能基为建模语言建立生物实例的功能模型,从而将生物解决方法反演至工程设计中.该设计过程模型的可行性和有效性在折叠式头盔的设计中得到了验证.

[1]檀润华.发明问题解决理论[M].北京:科学出版社, 2004.
[2] GERO J S, KAZAKOV V A. Evolving design genes in space layout planning problems [J]. Artificial Intelligence in Engineering, 1998, 12(3): 163-176.
[3] 李洪杰,肖人彬. 基于功能构造的复杂产品进化设计基因模型[J]. 机械工程学报, 2003(5): 41-48.
LI Hong-jie, XIAO Ren-bin. Genetic model in evolutionary design of complicated product based-on function construction [J]. Chinese Journal of Mechanical Engineering, 2003(5): 41-48.
[4]陈泳, 冯培恩, 潘双夏,等. 基于共生进化原理的功能结构设计[J]. 机械工程学报, 2005(6): 19-24.
CHEN Yong, FENG Pei-en, PAN Shuang-xia, et al. Functional structure design model based on the symbiotic evolutionary theory [J]. Chinese Journal of Mechanical Engineering, 2005(6):19-24.
[5]张利萍, 王德伦,戴建生. 变胞机构的基因进化综合理论[J]. 机械工程学报, 2009(2): 106-113.
ZHANG Li-ping, WANG De-lun, DAI Jian-sheng. Genetic evolution principles for metamorphic mechanism design [J]. Chinese Journal of Mechanical Engineering, 2009(2):106-113.
[6] VINCENT J F V, BOGATYREVA O A, BOGATYREV N R, et al. Biomimetics: its practice and theory [J]. Journal of the Royal Society Interface, 2006, 3(9): 471-482.
[7] 刘征, 潘凯,顾新建. 集成TRIZ的产品生态设计方法研究[J]. 机械工程学报, 2012(11): 72-77.
LIU Zheng, PAN Kai, GU Xin-jian. Research on product ecological design method integrating TRIZ [J]. Chinese Journal of Mechanical Engineering, 2012(11):72-77.
[8] HERSTATT C, KALOGERAKIS K. How to use analogies for breakthrough innovations [J]. International Journal of Innovation and Technology Management, 2005, 2(3): 331-347.
[9] CHAKRABARTI A, SHEA K, STONE R, et al. Computer-based design synthesis research: an overview [J]. Journal of Computing and Information Science in Engineering, 2011, 11: 021003.
[10]黄沈权,徐福缘,代风,等. 基于知识网络的TRIZ集成框架及其关键技术[J]. 浙江大学学报:工学版, 2011 (8):1337-1345.
HUANG Shen-quan, XU Fu-yuan, DAI Feng, et al. Integrated architecture for TRIZ based on knowledge network and its key technologies [J]. Journal of Zhejiang University: Engineering Science, 2011(8):1337-1345.
[11] KIM J, AROLA D D, GU L, et al. Functional biomimetic analogs help remineralize apatite-depleted demineralized resin-infiltrated dentin via a bottom-up approach [J]. Acta Biomaterialia, 2010, 6 (7): 2740-2750.
[12] COLLMAN J P, DECREAU R A. Functional biomimetic models for the active site in the respiratory enzyme cytochrome c oxidase [J]. Chemical Communications, 2008 (41): 5065-5076.
[13] STONE R B, WOOD K L. Development of a functional basis for design [J]. Journal of Mechanical Design, 2002, 122(4): 359-370.
[14] NAGEL J K S, STONE R B, MCADAMS D A. An engineering-to-biology thesaurus for engineering design [C]∥Proceeding of 2010 ASME IDETC/CIE. Montreal: ASME, 2010.
[15] NAGEL J K S, NAGEL R L, STONE R B, et al. Function-based, biologically inspired concept generation [J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2010, 24(04): 521-535.
[16]邓家褆,韩晓建,曾硝. 产品概念设计[M]. 北京:机械工业出版社, 2002.
[17]王玉新,毛晓辉,李添益.功能-结构双向创新商空间模型关键技术研究[J].浙江大学学报:工学版, 2010(9): 1643-1652.
WANG Yu-xin, MAO Xiao-hui, LI Tian-yi. Key techniques in function-form bidirectional creativity quotient space model [J]. Journal of Zhejiang University: Engineering Science, 2010(9):1643-1652.     

[1] LIU Zheng, GU Xin-jian, PAN Kai, YANG Qing-hai. Research on TRIZ-based product eco-design
——Integrating rule-based reasoning and case-based reasoning
[J]. J4, 2014, 48(3): 436-444.
[2] YANG Wei, ZHANG Xiu-feng, YANG Can-jun, WU Hai-jie. Design of a lower extremity exoskeleton
based on 5-bar human machine model
[J]. J4, 2014, 48(3): 430-435.
[3] LIN Xiao-hua, FENG Yi-xiong, TAN Jian-rong. Intervals prediction of system reliability parameters based on immune optimization[J]. J4, 2013, 47(6): 1013-1021.
[4] YING Zheng, WANG Qing, LI Jiang-xiong, KE Ying-lin,SUN Wen-bo,HAN Yong-wei. Motion data integration and monitoring of digital assembly system of aircraft[J]. J4, 2013, 47(5): 761-767.
[5] YING Zheng, ZHANG Ming, WANG Qing, KE Ying-lin. Modeling and simulation of wear for alignment mechanism of
large aircraft component
[J]. J4, 2013, 47(2): 209-215.
[6] LIU Xi-ze, QI Guo-ning, FU Jian-zhong, FAN Bei-bei, XU Jing. A design process model of integrated morphological matrix and
conflict resolving principles
[J]. J4, 2012, 46(12): 2243-2251.
[7] HUANG Xue-mei, ZHANG Lei-an, WEI Xiu-ting. D-MFAC algorithm control of megawatt wind turbine
blade static loading process
[J]. J4, 2012, 46(12): 2280-2284.
[8] . Constraint model and calculating method by evolutionary game algorithm for product conceptual design[J]. J4, 2012, 46(3): 533-541.
[9] LUO Cheng-dui, FENG Yi-xiong, TAN Jian-rong, AN Xiang-hua. Group multicriteria solving for product design scheme based on semantic PROMETHEE[J]. J4, 2012, 46(3): 524-532.
[10] AN Xiang-hua, FENG Yi-xiong, TAN Jian-rong. Collaborative evaluation method for product concept based on
Choquet integral and evidence theory
[J]. J4, 2012, 46(1): 163-169.
[11] MA Zhi-yong, QIU Qing-ying, FENG Pei-en, SHEN Men-hong, ZENG Ling-bin. Concept system and application method of mechanical symmetry[J]. J4, 2010, 44(12): 2354-2359.
[12] ZHANG Xiu-Fen, ZHANG Shu-Wei, YI Guo-Dong. Multi-granularity and hierarchy disassemblability evaluation model
and methodology for products
[J]. J4, 2010, 44(3): 581-588.
[13] JIANG Wei-Guang, WU Jian-Wei, TUN Can, et al. Ontology based product knowledge integration[J]. J4, 2009, 43(10): 1801-1807.
[14] LIU Hai-Jiang, JI Yang-Jian, QI Guo-Ning, et al. Product integrated design knowledge model supporting multidisciplinary design optimization[J]. J4, 2009, 43(10): 1841-1847.
[15] FU Yu-Ying, BO Xiao-Hong, WANG Zheng-Xiao. Supply chain multiobjective optimization based on fuzzy cooperative game[J]. J4, 2009, 43(09): 1644-1648.