Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (3): 500-510    DOI: 10.3785/j.issn.1008-973X.2021.03.010
    
Blasting seismic effect of buried cast iron pipeline in silty clay layer
Bin ZHU1(),Nan JIANG1,2,*(),Chuan-bo ZHOU1,Yong-sheng JIA2,3,Xue-dong LUO1,Ting-yao WU1
1. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
2. Hubei Key Laboratory of Blasting Engineering, Jianghan University, Wuhan 430024, China
3. Wuhan Explosion and Blasting Co. Ltd, Wuhan 430024, China
Download: HTML     PDF(1861KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A full-scale blasting experiment of adjacent pre-buried pipes was designed and implemented, aiming at the common direct-buried ductile iron pipes in the urban area of Wuhan. Combined with the finite element numerical calculation method and considering the different buried depth of the pipeline, the dynamic response of the directly buried pipeline in the silty clay layer under the action of the blasting vibration was studied. Results show that the pipeline and the surface peak particle velocities (PPVs) increase with the decrease of the blast distance, and the most dangerous working condition is blasting directly below the pipeline. The central section of the pipeline is dangerous. The PPVs at the waist and bottom of the tube are larger for the dangerous section. The dynamic strain is mainly the axial tensile strain and the hoop strain is smaller. The peak effective stress in the bottom element is the largest and that of the pipe shoulder is the smallest. There is a functional relationship between PPVS and different embedded depth of pipeline. By measuring the relationship between the surface PPVs and the peak effective stress, the peak effective stress of the pipeline section can be predicted, which provides a calculation method for the safety determination of related pipelines in engineering construction.



Key wordsdirectly buried pipeline      blasting seismic effect      particle velocities      peak effective stress      safety evaluation     
Received: 15 February 2020      Published: 25 April 2021
CLC:  TU 990.3  
Fund:  国家自然科学基金资助项目(41807265,41972286);爆破工程湖北省重点实验室开放基金资助项目(HKLBEF202001);湖北省自然科学基金资助项目(2019CFB224)
Corresponding Authors: Nan JIANG     E-mail: b.zhu@cug.edu.cn;jiangnan@cug.edu.cn
Cite this article:

Bin ZHU,Nan JIANG,Chuan-bo ZHOU,Yong-sheng JIA,Xue-dong LUO,Ting-yao WU. Blasting seismic effect of buried cast iron pipeline in silty clay layer. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 500-510.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.03.010     OR     http://www.zjujournals.com/eng/Y2021/V55/I3/500


粉质黏土层直埋铸铁管道爆破地震效应

针对武汉市区内常见直埋球墨铸铁管道,设计实施邻近预埋管道的全尺寸爆破实验. 结合有限元数值计算方法,考虑管道不同埋深,研究爆破地震作用下粉质黏土地层内直埋管道动力响应. 研究结果表明,管道和地表峰值振速(PPVs)随爆源与管道距离的减小而增大,在管道正下方爆破为最危险工况. 管道中心截面为危险截面,危险截面PPVs以管腰和管底较大,动态应变以轴向拉伸应变为主,环向应变次之,峰值有效应力以底部单元最大,管道肩部最小. 管道不同埋置深度和PPVs具有比例关系,通过实测地表振速与管道有效应力关系可以预测管道截面爆破峰值有效应力,计算关系式可以为岩土爆破施工中邻近管道的安全性评价提供计算方法.


关键词: 直埋管道,  爆破地震,  质点速度,  峰值有效应力,  安全评价 
地层 ρ /(kN·m?3 φ /(°) c /kPa fk /kPa
填土 19.2 18.0 8 120~160
粉质黏土 19.3 12.0 25 160~180
石英砂岩 26.8 5.5 43 2000~4000
Tab.1 Rock and soil parameters of blasting site
Fig.1 Schematic diagram of field experiment design
管材 E /GPa h /m d /mm δ /mm μ
球墨铸铁 195 2 1 000 10 0.3
Tab.2 Ductile iron pipe parameters for experiment
Fig.2 Arrangement diagram of experimental monitoring point
Fig.3 Field experiment implementation diagram
Fig.4 Numerical model of field blasting experiment
材料 ρ /(g·m?3 E /GPa μ c /MPa φ /(°) σt /MPa
管道 7.85 195.000 0.30 ? ? 235.000
粉质黏土 1.98 0.039 0.35 0.035 15 0.028
砂岩 2.68 52.000 0.25 5.500 43 2.580
Tab.3 Numerical simulation parameter of blasting experiment
ρ /(g·cm?3 A /GPa B /GPa R1 R2 ω E0 /GPa V /cm3
1.25 214 18.2 4.2 0.9 0.15 4.19 1.0
Tab.4 Detonation product parameter
Fig.5 Diagram of numerical measurement points for blasting experiments
Fig.6 Experimental and numerical simulation of vibration waveform of mass at bottom of pipe
Fig.7 Experimental and numerical simulation of vibration frequency of mass at bottom of pipe
Fig.8 Vibration velocity in axial direction of pipeline
Fig.9 Schematic diagram of pipe section unit
Fig.10 Simulation results of pipe section velocity distribution
Fig.11 Measured pipe section strain distribution
Fig.12 Effective stress distribution of pipeline
Fig.13 Effective stress distribution of section
Fig.14 Relationship between pipe and surface vibration velocity
Fig.15 Relationship between effective stress and vibration speed
h /m vp /(cm·s?1 vg /(cm·s?1 K
0.5 27.56 45.320 0.60
1.0 33.35 43.340 0.76
1.5 38.15 40.120 0.95
2.0 43.99 37.123 1.18
2.5 50.35 33.330 1.51
3.0 59.45 28.140 2.11
Tab.5 Vibration velocity with different pipeline buried depth
Fig.16 Relationship between pipeline and ground surface vibration velocity ratio and buried depth
[1]   中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 爆破安全规程: GB6722—2014[S]. 北京: 中国标准出版社, 2015: 7.
[2]   管晓明, 张良, 王利民, 等 隧道近距下穿管线的爆破振动特征及安全标准[J]. 中南大学学报: 自然科学版, 2019, 50 (11): 2870- 2885
GUAN Xiao-ming, ZHANG Liang, WANG Li-min, et al Blasting vibration characteristics and safety standards of tunnels passing through pipelines at short distances[J]. Journal of Central South University: Science and Technology, 2019, 50 (11): 2870- 2885
[3]   夏宇磬, 蒋楠, 周传波, 等 下穿地铁隧道爆破振动作用下给水管道动力响应特性研究[J]. 爆破, 2019, 36 (1): 6- 13
XIA Yu-qing, JIANG Nan, ZHOU Chuan-bo, et al Study on the dynamic response characteristics of water supply pipelines under the blasting vibration of subway tunnels[J]. Blasting, 2019, 36 (1): 6- 13
[4]   王栋, 何历超, 王凯 钻爆法施工对邻近埋地管道影响的现场实测与数值模拟分析[J]. 土木工程学报, 2017, 50 (Suppl.2): 134- 140
WANG Dong, HE Li-chao, WANG Kai Field measurement and numerical simulation analysis of the impact of drilling and blasting construction on adjacent buried pipelines[J]. Journal of Civil Engineering, 2017, 50 (Suppl.2): 134- 140
[5]   张黎明, 赵明生, 池恩安, 等 爆破振动对地下管道影响实验及风险预测[J]. 振动与冲击, 2017, 36 (16): 241- 247
ZHANG Li-ming, ZHAO Ming-sheng, CHI En-an, et al Experiment and risk prediction of impact of blasting vibration on underground pipelines[J]. Vibration and Shock, 2017, 36 (16): 241- 247
[6]   XIA Y, JIANG N, ZHOU C, et al Safety assessment of upper water pipeline under the blasting vibration induced by subway tunnel excavation[J]. Engineering Failure Analysis, 2019, 104 (6): 626- 642
[7]   JIANG N, GAO T, ZHOU C B, et al Effect of excavation blasting vibration on adjacent buried gas pipeline in a metro tunnel[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2018, 81 (11): 590- 601
[8]   SCOTT A A, TEERAWUT J Response of single piles and pipelines in liquefaction–induced lateral spreads using controlled blasting[J]. Earthquake Engineering and Engineering Vibration, 2002, 1 (2): 181- 193
doi: 10.1007/s11803-002-0064-3
[9]   高坛, 周传波, 蒋楠, 等 基坑开挖爆破下邻近管道振动速度安全阈值研究[J]. 安全与环境学报, 2017, 17 (6): 2191- 2195
GAO Tan, ZHOU Chuan-bo, JIANG Nan, et al Study on the safety threshold of adjacent pipeline vibration speed under foundation pit excavation blasting[J]. Journal of Safety and Environment, 2017, 17 (6): 2191- 2195
[10]   张震, 周传波, 路世伟, 等 超浅埋地铁站通道爆破暗挖地表振动传播特征[J]. 中南大学学报: 自然科学版, 2017, 48 (8): 2119- 2125
ZHANG Zhen, ZHOU Chuan-bo, LU Shi-wei, et al Propagation characteristics of ground vibration induced by subsurface blasting excavation in an ultra–shallow buried underpass[J]. Journal of Central South University: Science and Technology, 2017, 48 (8): 2119- 2125
[11]   屈若枫, 徐光黎, 王金峰, 等 武汉地区典型软土物理力学指标间的相关性研究[J]. 岩土工程学报, 2014, 36 (Suppl.2): 113- 119
QU Ruo-feng, XU Guang-li, WANG Jin-feng, et al Correlation between physical and mechanical indices of typical soft soils in Wuhan area[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (Suppl.2): 113- 119
[12]   袁松, 王峥峥, 周佳媚 隧道地震动力计算边界取值范围研究[J]. 土木工程学报, 2012, 45 (11): 166- 172
YUAN Song, WANG Zheng-zheng, ZHOU Jia-mei Research on boundary value range of tunnel seismic dynamic calculation[J]. Journal of Civil Engineering, 2012, 45 (11): 166- 172
[13]   尚晓江, 苏建宇. ANSYS/LS–DYNA动力分析方法与工程实例[M]. 北京: 中国水利水电出版社, 2006.
[14]   刘小鸣, 陈士海 隧道掘进中掏槽孔爆破引起的地表振动波形预测[J]. 岩土工程学报, 2019, 41 (9): 1731- 1737
LIU Xiao-ming, CHEN Shi-hai Prediction of surface vibration waveform caused by blasting in tunnel excavation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (9): 1731- 1737
[15]   鲁稳, 潘卫东 Drucker–Prager系列屈服准则在稳定分析中的应用研究[J]. 汕头大学学报: 自然科学版, 2014, 29 (1): 73- 80
LU Wen, PAN Wei-dong Application of Drucker-Prager series yield criterion in stability analysis[J]. Journal of Shantou University: Natural Science Edition, 2014, 29 (1): 73- 80
[16]   许名标, 彭德红 某水电站边坡开挖爆破震动动力响应有限元分析[J]. 岩土工程学报, 2006, (6): 770- 775
XU Ming-biao, PENG De-hong Finite element analysis of blasting dynamic response of slope excavation of a hydropower station[J]. Chinese Journal of Geotechnical Engineering, 2006, (6): 770- 775
[17]   周琪, 陈永强 轴对称薄壁结构自由振动的边界元分析[J]. 力学学报, 2019, 51 (1): 146- 158
ZHOU Qi, CHEN Yong-qiang Boundary element analysis of free vibration of axisymmetric thin-wall structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51 (1): 146- 158
[18]   李兴华, 龙源, 纪冲, 等 爆破地震波作用下隧道围岩动应力集中系数分析[J]. 岩土工程学报, 2013, 35 (3): 578- 582
LI Xing-hua, LONG Yuan, JI Chong, et al Analysis of dynamic stress concentration factor of tunnel surrounding rock under blasting seismic wave[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (3): 578- 582
[19]   黄强兵, 彭建兵 基于地震波入射角的地下管道地震应力计算[J]. 地下空间与工程学报, 2008, (5): 979- 984
HUANG Qiang-bing, PENG Jian-bing Study on seismic stress calculation of underground pipeline based on incident angle of seismic wave[J]. Chinese Journal of Underground Space and Engineering, 2008, (5): 979- 984
[20]   中华人民共和国住房和城乡建设部. 输气管道工程设计规范: GB 50251—2015 [S]. 北京: 中国标准出版社, 2015: 7.
[1] HONG Fei, WU Wen hua, DU Yu, BI Xiang jun. Prototype monitoring research of bucking state made of segbend section for deepwater S lay installation[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 2018-2024.