Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (5): 1006-1018    DOI: 10.3785/j.issn.1008-973X.2019.05.023
    
Aerodynamics/propulsion coupled modeling and analysis of hypersonic vehicle within wide speed range
Feng CHENG1,2(),Dong ZHANG1,2,*(),Shuo TANG1,2
1. School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China
2. Shaanxi Aerospace Flight Vehicle Design Key Laboratory, Xi’an 710072, China
Download: HTML     PDF(1864KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The further investigation was required to meet the wide speed range model requirement of the airbreathing hypersonic vehicle in preliminary design phase. A wide speed range aerodynamic model for distributions of pressure and friction on the surface of vehicle, which was independent of the vehicle concept, was established based on the streamline tracing technique and the hypersonic aerodynamic theories. A wide speed range dual-mode scramjet model including boundary layer and transonic characteristics was established on the basis of quasi-one-dimensional flow theory. The errors between models and experiments less than 2% and 3% were achieved for the typical cases, respectively. The coupling/decoupling strategies of forebody/inlet and after body/nozzle forces were presented and a wide speed range aerodynamics/propulsion integrated coupling model and platform was built, based on the established models. An analysis of wide speed range aerodynamics/propulsion coupling characteristics of a typical airbreathing hypersonic vehicle was carried out, and severe nonlinear aerodynamics/propulsion coupling characteristics were observed for the integrated designed airbreathing hypersonic vehicle. The results of analysis agreed that the coupling model established could be used to evaluate the aerodynamics/propulsion coupling characteristics, qualitatively and quantitatively, under a satisfying accuracy requirement, and also helpful for the design, simulation and control research of airbreathing hypersonic vehicle.



Key wordshypersonic vehicle      wide speed range      aerodynamics/propulsion integration      coupling model      sensitivity analysis     
Received: 21 May 2018      Published: 17 May 2019
CLC:  V 211  
  V 236  
  V 475  
Corresponding Authors: Dong ZHANG     E-mail: chengfengcool@mail.nwpu.edu.cn;zhangdong@nwpu.edu.cn
Cite this article:

Feng CHENG,Dong ZHANG,Shuo TANG. Aerodynamics/propulsion coupled modeling and analysis of hypersonic vehicle within wide speed range. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 1006-1018.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.05.023     OR     http://www.zjujournals.com/eng/Y2019/V53/I5/1006


高超声速运载器宽速域气动/推进耦合建模与分析

为了满足吸气式高超声速运载器在初步设计阶段的宽速域模型需求,基于流线追踪和高超声速气动理论建立独立于构型的宽速域压力和摩擦力壁面分布气动模型;以准一维流理论为基础,建立包含边界层和跨声速特性的宽速域双模态超燃冲压发动机模型. 对于典型工况,2种模型的仿真结果与试验结果误差分别不大于2%、3%. 在所建立模型的基础上,提出前体/进气道和后体/尾喷管力系的解耦/耦合策略,建立气动和推进学科的宽速域一体化耦合模型及仿真平台.针对某吸气式高超声速运载器的分析发现一体化设计的吸气式高超声速运载器存在严重的非线性气动/推进强耦合,认为所建立的耦合模型在精度满足一定要求的条件下能够定量/定性地评估气动/推进的耦合效应,有助于吸气式高超声速运载器的构型设计、地面仿真和控制研究.


关键词: 高超声速运载器,  宽速域,  气动/推进一体化,  耦合建模,  灵敏度分析 
Fig.1 Sketch of fluid along streamline
Fig.2 Sketch of boundary layer on plate
Fig.3 Framework of aerodynamic forces preliminary evaluation platform of hypersonic vehicle
Ma RMSE/%
CL CD Cm
4.50 1.339 7 0.033 6 0.258 4
5.83 1.778 4 0.291 0 0.487 8
10.07 0.321 0 0.184 9 0.054 4
Tab.1 Comparison of root mean square errors between AFPE and experimental results
Fig.4 Streamlines and contours computed by AFPE on HL-20
Fig.5 Sketch of fluid control volume
工况 Tta/K pta/Pa Ma Ta/K pa/Pa Ttf/K ? ηc ReL/106 L/m
1 2 283.3 3 130 220 3.23 872.2 51 503.8 705.6 0.50 0.94 12.05 1.190
2 2 277.8 3 130 220 3.23 869.4 51 503.8 ? 0.00 ? 12.09 1.190
3 2 297.2 3 144 009 3.22 878.3 51 848.6 643.3 0.78 0.81 9.47 0.945
4 2 305.6 3 144 009 3.22 883.3 51 848.6 644.4 0.49 0.92 9.53 0.945
Tab.2 Experimental conditions for quasi-one-dimensional model validation
工况 ? RMSE/%
1 0.50 1.67
2 0.00 0.38
3 0.78 2.69
4 0.49 0.50
Tab.3 Comparison of root mean square errors between quasi-one-dimensional model and experimental results
Fig.6 Comparison between simulation and experimental results of quasi-one-dimensional model
Fig.7 Framework of wide range integrated coupling model of airbreathing hypersonic vehicle
Fig.8 Typical airbreathing hypersonic vehicle
Fig.9 Effects of Mach number and angle of attack on total pressure recovery coefficient and mass flow capture of inlet
Fig.10 Effects of Mach number, angle of attack and fuel equivalence ratio on propulsion of vehicle
Fig.11 Effects of Mach number, angle of attack, deflection angle of aileron and fuel equivalence ratio on lift coefficient of vehicle
Fig.12 Effects of Mach number, angle of attack, deflection angle of aileron and fuel equivalence ratio on pitch moment coefficient of vehicle
[1]   罗金玲, 李超, 徐锦 高超声速飞行器机体/推进一体化设计的启示[J]. 航空学报, 2015, 36 (1): 39- 48
LUO Jin-ling, LI Chao, XU Jin Inspiration of hypersonic vehicle with airframe/propulsion integrated design[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36 (1): 39- 48
[2]   SHAUGHNESSY J D, PINCKNEY S Z, MCMINN J D, et al. Hypersonic vehicle simulation model: winged-cone configuration [R]. Hampton: NASA Langley Research Center, 1990.
[3]   杨春宁, 方家为, 李春, 等 基于稳定性判据的高超声速复合控制方法[J]. 浙江大学学报:工学版, 2017, 51 (2): 422- 428
YANG Chun-ning, FANG Jia-wei, LI Chun, et al Hypersonic vehicle blended control methodology based on stability criterion[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (2): 422- 428
[4]   王发民, 丁海河, 雷麦芳 乘波布局飞行器宽速域气动特性与研究[J]. 中国科学E辑:技术科学, 2009, 39 (11): 1828- 1835
WANG Fa-ming, DING Hai-he, LEI Mai-fang Aerodynamic characteristics research on wide-speed range waverider configuration[J]. Science in China Series E: Technology Sciences, 2009, 39 (11): 1828- 1835
[5]   MIRMIRANI M, WU C, CLARK A, et al. Modeling for control of a generic airbreathing hypersonic vehicle [C]// AIAA Guidance, Navigation, and Control Conference and Exhibit. San Francisco: AIAA, 2005.
[6]   MIRMIRANI M, KUIPERS M, LEVIN J, et al. Flight dynamic characteristics of a scramjet powered generic hypersonic vehicle [C]// 2009 American Control Conference. St. Louis: AACC, 2009.
[7]   MURTY M C, CHAKRABORTY D Coupled external and internal flow simulation of a liquid fuelled ramjet vehicle[J]. Aerospace Science and Technology, 2014, 36: 1- 4
doi: 10.1016/j.ast.2014.03.011
[8]   吴颖川, 贺元元, 贺伟, 等 吸气式高超声速飞行器机体推进一体化技术研究进展[J]. 航空学报, 2015, 36 (1): 245- 260
WU Ying-chuan, HE Yuan-yuan, HE Wei, et al Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36 (1): 245- 260
[9]   叶友达 高超声速空气动力学研究进展与趋势[J]. 科学通报, 2015, 60: 1095- 1103
YE You-da Advances and prospects in hypersonic aerodynamics[J]. Chinese Science Bulletin, 2015, 60: 1095- 1103
[10]   BONNER E, CLEVER W, DUNN K. Aerodynamic preliminary analysis system Ⅱ, part I: theory [R]. Hampton: NASA/LARC, 1981.
[11]   CRUZ C, WARE G. Predicted aerodynamic characteristics for HL-20 lifting-body using aerodynamic preliminary analysis system (APAS) [C]// AlAA 17th Aerospace Ground Testing Conference. Nashville: AIAA, 1992.
[12]   KINNEY D J. Aero-thermodynamics for conceptual design [C]// 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2004.
[13]   LOBBIA M A, SUZUKI K Experimental investigation of a Mach 3.5 waverider designed using computational fluid dynamics[J]. AIAA Journal, 2015, 53 (6): 1590- 1601
doi: 10.2514/1.J053458
[14]   LOBBIA M A Multidisciplinary design optimization of waverider-derived crew reentry vehicles[J]. Journal of Spacecraft and Rockets, 2017, 54 (1): 233- 245
doi: 10.2514/1.A33253
[15]   LOBBIA M A. Optimization of waverider-derived crew reentry vehicles using a rapid aerodynamics analysis approach [C]// 53rd AIAA Aerospace Sciences Meeting. Kissimmee: AIAA, 2015.
[16]   LOBBIA M A Rapid supersonic/hypersonic aerodynamics analysis model for arbitrary geometries[J]. Journal of Spacecraft and Rockets, 2017, 54 (1): 315- 322
doi: 10.2514/1.A33514
[17]   张栋, 唐硕, 祝强军 超燃冲压发动机准一维建模研究[J]. 固体火箭技术, 2015, 38 (2): 192- 197
ZHANG Dong, TANG Shuo, ZHU Qiang-jun Research on quasi one dimensional modeling of the scramjet engine[J]. Journal of Solid Rocket Technology, 2015, 38 (2): 192- 197
[18]   CAO R, CUI T, YU D, et al New method for solving one-dimensional transonic reacting flows of a scramjet combustor[J]. Journal of Propulsion and Power, 2016, 32 (6): 1403- 1412
doi: 10.2514/1.B36056
[19]   TORREZ S M, DALLE D J, DRISCOLL J F New method for computing performance of choked reacting flows and ram-to-scram transition[J]. Journal of Propulsion and Power, 2013, 29 (2): 433- 445
doi: 10.2514/1.B34496
[20]   BIRZER C, DOOLAN C J Quasi-one-dimensional model of hydrogen-fueled scramjet combustors[J]. Journal of Propulsion and Power, 2009, 25 (6): 1220- 1225
doi: 10.2514/1.43716
[21]   BOLENDER M A, DOMAN D B. A non-linear model for the longitudinal dynamics of a hypersonic air-breathing vehicle [C]// AIAA Guidance, Navigation, and Control Conference and Exhibit. San Francisco: AIAA, 2005.
[22]   DALLE D, FRENDREIS S, DRISCOLL J, et al. Hypersonic vehicle flight dynamics with coupled aerodynamic and reduced-order propulsive models [C]// AIAA Atmospheric Flight Mechanics Conference. Toronto: AIAA, 2010.
[23]   张鲲鹏. 高超声速飞行器飞行/推进一体化建模与控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
ZHANG Kun-peng. Research on integrated flight/propulsion modeling and control method for hypersonic vehicles [D]. Harbin: Harbin Institute of Technology, 2014.
[24]   张希彬, 宗群, 曾凡琳 考虑气动-推进-弹性耦合的高超声速飞行器面向控制建模与分析[J]. 宇航学报, 2014, 35 (5): 528- 536
ZHANG Xi-bin, ZONG Qun, ZENG Fan-lin Control-oriented modeling and analysis of a hypersonic vehicle with coupled aerodynamic-propulsion-elastic[J]. Journal of Astronautics, 2014, 35 (5): 528- 536
doi: 10.3873/j.issn.1000-1328.2014.05.006
[25]   黄伟, 王振国, 罗世彬, 等 高超声速乘波体飞行器机身/发动机一体化关键技术研究[J]. 固体火箭技术, 2009, 32 (3): 242- 248
HUANG Wei, WANG Zhen-guo, LUO Shi-bin, et al An overview of research on engine/airframe integration for hypersonic waverider vehicles[J]. Journal of Solid Rocket Technology, 2009, 32 (3): 242- 248
doi: 10.3969/j.issn.1006-2793.2009.03.002
[26]   LOVE E S, HENDERSON A, BERTRAM M H. Some aspects of the air helium simulation and hypersonic approximations [R]. Washington: NASA, 1959.
[27]   VAN-DRIEST E R The problem of aerodynamic heating[J]. Aeronautical Engineering Review, 1956, 26- 41
[28]   HAZELTON D M, BOWERSOX R D W. Skin friction correlations for high enthalpy flows [C]// 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Norfolk: AIAA, 1998.
[29]   BOWCUTT K G, ANDERSON J D, CAPRIOTTI D. Viscous optimized hypersonic waveriders [C]// AIAA 25th Aerospace Sciences Meeting. Reno: AIAA, 1987.
[30]   HARRIS J E, BLANCHARD D K. Computer program for solving laminar, transitional, or turbulent compressible boundary-layer equations for two-dimensional and axisymmetric flow [R]. Washington: NASA, 1982.
[31]   WARE G M. Supersonic aerodynamic characteristics of a proposed assured crew return capability (ACRC) lifting-body configuration [R]. Washington: NASA, 1989.
[32]   MICOL J R. Experimental and predicted aerodynamic characteristics of a proposed assured crew return vehicle (ACRV) lifting-body configuration at Mach 6 and 10 [C]// AIAA 16th Aerodynamic Ground Testing Conference. Seattle: AIAA, 1990.
[33]   SCALLION W I. Aerodynamic characteristics and control effectiveness of the HL-20 lifting body configuration at Mach 10 in air [R]. Washington: NASA, 1999.
[34]   常雨, 陈苏宇, 张扣立 高超声速边界层转捩特性试验探究[J]. 宇航学报, 2015, 36 (11): 1318- 1323
CHANG Yu, CHEN Su-yu, ZHANG Kou-li Experimental investigation of hypersonic boundary layer transition[J]. Journal of Astronautics, 2015, 36 (11): 1318- 1323
doi: 10.3873/j.issn.1000-1328.2015.11.014
[35]   HEISER W H, PRATT D T, DALEY D H, et al. Hypersonic airbreathing propulsion [M]. Washington: AIAA, 1994.
[36]   高太元, 崔凯, 王秀平, 等. 三维后体/尾喷管一体化构型优化设计及性能分析[J]. 科学通报, 2012, 57(4): 239–247.
GAO Tai-yun, CUI Kai, WANG Xiu-ping, et al. Aerodynamic optimization and evaluation for the three-dimensional afterbody/nozzle integrated configuration of hypersonic vehicles[J]. Chinese Science Bulletin, 2012, 57(4): 239–247.
[1] Xiu-fen ZHANG,Yun-fei GAO. Multi-dimensional hierarchical remanufacturability evaluation method for end-of-life mechanical parts[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 954-962.
[2] Teng-yi HUANG,Jin ZHOU,Yan XU,Fan-xu MENG. Modeling of MR damper based on multi-field coupling analysis and influence of structural parameters[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2001-2008.
[3] Jin ZHOU,Tian-yu GAO,Yi CHEN,Hong-hao XI. Model updating of dual-rotor decanter centrifuge with dynamic test[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 241-249.
[4] REN Song, OUYANG Xun, WU Jian-xun, CHEN Fan, WANG Liang, CHEN Jie. Elastic-swelling analytical model of anhydrite rock considering time-dependent effect[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 896-905.
[5] BAO Teng-fei, LI Jian-ming, ZHAO Jin-lei. Strain transfer analysis between embedded plastic optical fibers and concretes[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2342-2348.
[6] LUO Yue, YE Shu-jun, WU Ji-chun, ZHANG Yan-hong, JIAO Xun, WANG Han-mei. Global sensitivity analysis of parameters in land subsidence model[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 2007-2013.
[7] YANG Chun ning, FANG Jia wei, LI Chun, GE Hui. Hypersonic vehicle blended control methodology based on stability criterion[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 422-428.
[8] FU Jian-xin, SONG Wei-dong, TAN Yu-ye. Influence degree analysis of rock mass' mechanical parameters on roadway's deformation characteristics[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2365-2372.
[9] LIU Kai, CAO Yi, ZHOU Rui, GE Shu-yi, DING Rui. Modeling and optimizing of one-translational and two-rotational LEMs flexure hinge[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2399-2407.
[10] HE Hai bin, YAO Dong wei, WU Feng. Construction and optimization of kinetic mechanism for alternative fuel of COG[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1841-1848.
[11] YIN Jiao-mei, ZHAO Xin-yue, ZHANG Shu-you. Method for designing parts structure to resist harsh environments considering sobol defects sensitivity[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1487-1494.
[12] TAN Jun-hua, LUO Kun, FAN Jian-ren. Verification and analysis of soft-sphere model in fully-resolved simulation of particulate flow[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 344-350.
[13] REN Li-bo, HAN Ji-tian, ZHAO Hong-xia. Numerical simulation of discrete particles in fluidized bed with immersed tube[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(1): 150-156.
[14] LIU Jie, WANG Yu-ping. An improved central force optimization based on simplex method[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 2-.
[15] LIU Jie, WANG Yu-ping. An improved central force optimization based on simplex method[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(12): 2115-2122.