Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Verification and analysis of soft-sphere model in fully-resolved simulation of particulate flow
TAN Jun-hua, LUO Kun, FAN Jian-ren
Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1305KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Towards solving the dry collision problem occurred in fully-resolved simulation of particulate flow, soft-sphere collision model was added to the multi-direct forcing and immersed boundary method. Applicability and accuracy of soft-sphere model for solving dry collision in fully-resolved simulation were verified by two typical cases: One was the bouncing motion of a sphere; the other was ball slipping on a rough surface. Parameters sensitivity analysis to soft-sphere model shows that the precision for collision simulation is improved if time step reduces; small spring stiffness increases the characteristic collision time such that limitations on fully-resolved simulation can be reduced; mesh size and normal restitution coefficient have little impact on solving precision. Fully-resolved simulation of a library-scale gas-solid fluidized bed shows that our numerical method can be used to deal with such complex dense flow systems.



Published: 01 February 2015
CLC:  TQ 021.1  
Cite this article:

TAN Jun-hua, LUO Kun, FAN Jian-ren. Verification and analysis of soft-sphere model in fully-resolved simulation of particulate flow. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 344-350.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.02.022     OR     http://www.zjujournals.com/eng/Y2015/V49/I2/344


软球模型在颗粒流全尺度模拟中的验证和分析

针对颗粒流全尺度模拟时的干碰撞问题,在内嵌边界多重直接力全尺度算法中加入软球碰撞模型.通过空气中小球碰撞壁面和小球在粗糙表面上滚动2个典型算例,验证了软球模型在全尺度模拟中对干碰撞作用求解的适用性和准确性.对软球模型各主要参数的敏感度分析表明:时间步长越小,碰撞计算越精确;弹簧刚度系数越小,软球模型的接触特征时间越长,全尺度计算受到的资源限制越小;网格尺度、速度恢复系数对软球模型在全尺度模拟中的求解精度影响不大.实验室尺度气固鼓泡床的全尺度模拟结果表明,该方法可用于计算复杂的稠密流动体系.

[1] GLOWINSKI R, PAN T W, HESLA T I, et al. A distributed Lagrange multiplier/fictitious domain method for particulate flows [J]. International Journal of Multiphase Flow, 1999, 25(5): 755-794.
[2] JOHNSON A A, TEZDUYAR T E. Simulation of multiple spheres falling in a liquid-filled tube [J]. Computer Methods in Applied Mechanics, 1996, 134(3/4): 351-373.
[3] MAURY B. A many-body lubrication model [J]. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, 1997, 325(9): 1053-1058.
[4] VAN DER HOEF M A, YE M, VAN SINT ANNALAND M, et al. Multi-scale modeling of gas-fluidized beds [J]. Advances in Chemical Engineering, 2006, 31: 65-149.
[5] KRIEBITZSCH S H L, VAN DER HOEF M A, KUIPERS J A M. Fully resolved simulation of a gas-fluidized bed: a critical test of DEM models [J]. Chemical Engineering Science, 2013, 91(0): 14.
[6] ARDEKANI A M, RANGEL R H. Numerical investigation of particle-particle and particle-wall collisions in a viscous fluid [J]. Journal of Fluid Mechanics, 2008, 596: 437-466.
[7] BREUGEM W P. A combined soft-sphere model collision/immersed boundary method for resolved simulations of particulate flows [C]∥ Proceedings of the ASME 2010 Third Joint US-European Fluids Engineering Summer Meeting. Montreal, Quebec, Canada: [s.n.],2010: 15.
[8] LI X, HUNT M L, COLONIUS T. A contact model for normal immersed collisions between a particle and a wall [J]. Journal of Fluid Mechanics, 2012, 691: 123-145.
[9] LUO K, WANG Z L, Fan J R, et al. Full-scale solutions to particle-laden flows: multidirect forcing and immersed boundary method [J]. Physical Review E, 2007, 76(6): 066709.
[10] WANG Z L, FAN J R, LUO K. Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles [J]. International Journal of Multiphase Flow, 2008, 34(3): 283-302.
[11] HU H H, PATANKAR N A, ZHU M Y. Direct numerical simulations of fluid-solid systems using the arbitrary Lagrange-Eulerian technique [J]. Journal of Computational Physics, 2001, 169(2): 427-462.
[12] GONDRET P, LANCE M, PETIT L. Bouncing motion of spherical particles in fluids [J]. Physics of Fluids, 2002, 14(2): 643-652.
[13] KANEKO Y, SHIOJIMA T, HORIB M. DEM simulation of fluidized beds for gas-phase olefin polymerization [J]. Chemical Engineering Science, 1999, 54(24): 5809-5821.
[14] MLLER C R, HOLLAND D J, SEDERMAN A J, et al. Granular temperature: comparison of magnetic resonance measurements with discrete element model simulations [J]. Powder Technology, 2008, 184(2): 241-253.

[1] SUN Jing-yuan, LOU Jia-ming, HUANG Zheng-liang,WANG Jing-dai, JIANG Bin-bo. Acoustic emission detection and CFD simulation of a liquid spray process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(2): 218-225.
[2] LIN Cong-Jing, WANG Jing-Dai, YANG Yong-Rong. Flow pattern and its transition of different particles in gas-solid fluidized bed[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(2): 305-309.
[3] LIN Cong-Jing, WANG Jing-Dai, YANG Yong-Rong. Minimum fluidization velocity of bimodal polyethylene particles[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(09): 1687-1691.