Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (2): 241-249    DOI: 10.3785/j.issn.1008-973X.2019.02.006
Mechanical Engineering     
Model updating of dual-rotor decanter centrifuge with dynamic test
Jin ZHOU(),Tian-yu GAO,Yi CHEN,Hong-hao XI
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Download: HTML     PDF(2899KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An accurate finite element (FE) dynamic model of decanter centrifuge with double-rotor was established based on dynamic test and model updating. The first three modal parameters of the centrifuge and screw conveyor under different support conditions were acquired through dynamic test on complex double-rotor assembly. The three-dimensional FE model was built accurately and the structural connection stiffness was parameterized. The effectiveness of established FE model was verified through the modal analysis and the comparison of each modal parameter between test and FE analysis. The influence of each connecting structure of the decanter centrifuge on structural modal parameters was obtained through sensitivity analysis and the key connecting structures of screw conveyor and assembled decanter centrifuge were model updated by genetic algorithm. The error of the first three bending modal frequencies between the updated model supported by bearings and test results was reduced to less than 5%. The updated model can be used to simulate the dynamic behaviour of decanter centrifuge and make a good basis for further dynamic analysis.



Key wordsdecanter centrifuge      dual-rotor      modal parameter      finite element (FE) model      sensitivity analysis      model updating     
Received: 25 June 2018      Published: 21 February 2019
CLC:  TH 113  
  TQ 51  
Cite this article:

Jin ZHOU,Tian-yu GAO,Yi CHEN,Hong-hao XI. Model updating of dual-rotor decanter centrifuge with dynamic test. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 241-249.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.02.006     OR     http://www.zjujournals.com/eng/Y2019/V53/I2/241


采用动力测试的双转子卧螺离心机模型修正

基于动力测试及有限元模型修正建立准确的双转子结构卧式螺旋离心机动力学模型. 通过对复杂双转子装配体进行分步动力测试,获得整机及内转子在不同支撑条件下的前3阶模态参数. 研究双转子结构三维有限元模型精确建模方法并建立结构连接刚度的参数化模型. 通过有限元模态仿真分析及仿真结果与各阶试验模态参数的对比,检验模型的有效性. 通过参数灵敏度分析,获得卧螺离心机各连接结构中对结构模态参数影响最大的因子,并使用遗传算法分别对内转子和整机关键连接结构进行模型修正. 修正后的整机有限元模型在轴承支撑状态下前3阶弯曲模态频率仿真结果与试验结果之间的误差小于5%,可以较好地模拟卧螺离心机的动态特性,为深入的振动分析打下良好基础.


关键词: 卧式螺旋离心机,  双转子,  模态参数,  有限元模型,  灵敏度分析,  模型修正 
Fig.1 Structural diagram of decanter centrifuge
Fig.2 Modal test process of decanter centrifuge
Fig.3 Identification of first three bending mode shapes in each modal test
Fig.4 Sketch map of decanter centrifuge finite element model and connecting structures
轴承位置 轴承型号 F/N K/(N·m?1)
内螺旋大端 SKF NU216 768 1.090×109
内螺旋小端 NKI 85/26 506 1.780×109
外转鼓大端 SKF NU1020M/C3 3 195 1.468×109
外转鼓小端 SKF 6218MC4 1 852 1.974×108
Tab.1 Stiffness of each bearing in decanter centrifuge
分析对象 阶次 ft / Hz fa / Hz Δf/%
内螺旋自由-自由 1 528.6 514.9 2.59
2 1 211.4 1 146.5 5.36
3 1 914.0 2 005.7 4.79
整机自由-自由 1 115.6 105.37 8.85
2 231.6 239.21 3.29
3 347.2 309.85 10.76
整机轴承支撑 1 103.2 90.7 12.10
2 146.1 132.9 9.10
3 290.8 274.3 5.70
Tab.2 Comparison of modal frequencies between test and finite element calculation before updating
Fig.5 First three bending mode shapes of screw conveyor and decanter centrifuge under different support conditions
Fig.6 Welding structure of screw conveyor
Fig.7 Fmite element model and updating area of screw conveyor
Fig.8 Sensitivity analysis of selected updating factors for each modal parameter of screw conveyor
Fig.9 Optimizing curve of fitness function
参数 Ew1 Ew2 Ew3 Ew4
修正前 193 193 193 193
修正后 320 217 283 320
Tab.3 Comparison of elastic modulus of heat affected zone before and after updating GPa
阶次 ft/Hz foa/Hz Δf1/% fua/Hz Δf2/%
1 528.6 514.9 2.59 529.5 0.17
2 1 211.4 1 146.5 5.36 1 185.4 2.15
3 1 914.0 2 005.7 4.79 2 051.6 7.19
Tab.4 Comparison of modal frequencies of screw conveyor between test and finite element calculation before and after updating
Fig.10 Comparison of frequency response of screw conveyor between test and finite element calculation before and after updating
Fig.11 Sensitivity analysis of connection stiffness for each modal frequency of decanter centrifuge
Fig.12 Correlation analysis of first two sensitive connection stiffness in each modal frequency
修正参数 K1 K2 K3 K4
修正前 500 000 500 000 500 000 500 000
修正后 1 338 746 1 320 746 2 573 608 2 979 869
Tab.5 Comparison of connection stiffness before and after updating N·mm−1
阶次 ft/Hz foa/Hz Δf1/% fua/Hz Δf2/%
1 115.6 105.37 8.85 117.63 1.73
2 231.6 239.21 3.29 244.06 5.31
3 347.2 309.85 10.76 337.87 2.37
Tab.6 Updating result of decanter centrifuge without support
阶次 ft/Hz foa/Hz Δf1/% fua/Hz Δf2/%
1 103.2 90.7 12.1 102.5 0.7
2 146.1 132.9 9.1 142.1 2.7
3 290.8 274.3 5.7 284.2 2.3
Tab.7 Updating result of decanter centrifuge supported by bearing
[1]   MERKL R, STEIGER W. Properties of decanter centrifuges in the mining industry[J]. Minerals and Metallurgical Processing, 2012, 2 (1): 6- 12
[2]   LO L, WU W, YANG Y, et al. Research on Identification of the noice and vibration of a decanter centrifuge [C] // 8th International Conference on Future Generation Communication and Networking. Taichung: [s. n.], 2014: 37–40.
[3]   杨钊, 黄维菊, 高志惠 大长径比卧螺离心机螺旋输送器的有限元分析[J]. 过滤与分离, 2011, 21 (4): 13- 15
YANG Zhao, HUANG We-iju, GAO Zhi-hui Finite element analysis of screw conveyor of horizontal screw centrifuge with large aspect ratio[J]. Filtration and Separation, 2011, 21 (4): 13- 15
doi: 10.3969/j.issn.1005-8265.2011.04.004
[4]   张志新, 王立智, 付豫龙, 等 高速卧螺离心机动力性能优化[J]. 化工机械, 2015, 10 (5): 676- 678
ZHANG Zhi-xin, WANG Li-zhi, FU Yu-long, et al Dynamic performance optimization of high-speed decanter centrifuge[J]. Chemical Engineering and Machinery, 2015, 10 (5): 676- 678
doi: 10.3969/j.issn.0254-6094.2015.05.018
[5]   张国良, 崔记银, 孙括, 等 卧螺离心机螺旋输送器转子系统的动力学分析[J]. 新技术新工艺, 2013, (12): 105- 107
ZHANG Guo-liang, CUI Ji-yin, SUN Kuo, et al Dynamic analysis on the spiral conveyor rotor system of horizontal spiral centrifuge[J]. Journal of Filtration and Separation, 2013, (12): 105- 107
doi: 10.3969/j.issn.1003-5311.2013.12.034
[6]   张雷. 基于有限元的卧螺离心机转鼓、螺旋输送器的研究[D]. 太原: 中北大学, 2015: 48.
ZHANG Lei. Study of dum and screw cnveyor of cntrifuge based on FEA [D]. Taiyuan: North University of China, 2015: 48.
[7]   杨彬, 王琪, 方海峰, 等 基于Ansys的卧螺过滤离心机的动态特性优化[J]. 机械强度, 2014, 36 (3): 419- 424
YANG Bin, WANG Qi, FANG Hai-feng, et al Dynamic charactrtistic optimization of horizontal worm screen centrifuge based on Ansys[J]. Journal of Mechanical Strength, 2014, 36 (3): 419- 424
[8]   张保强, 陈国平, 郭勤涛, 等 基于模态频率和有效模态质量的有限元模型修正[J]. 振动与冲击, 2012, 24 (31): 69- 73
ZHANG Bao-qiang, CHEN Guo-ping, GUO Qin-tao, et al Finite element model updating based on modal frequency and effective modal mass[J]. Journal of Vibration and Shock, 2012, 24 (31): 69- 73
[9]   WARD H, STEFAN L, PALU S. Modal analysis theory and testing [M]. 2th ed. London: Research Studies Press Ltd, 2000: 131.
[10]   陈怡. 磁悬浮轴承支承的卧螺离心机动力学分析及优化设计[D]. 南京: 南京航空航天大学, 2016: 52.
CHEN Yi. Dynamics analysis and optimization design of the maglev decanter centrifuge [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 52.
[11]   XU Y, ZHOU J, DI L Active magnetic bearing rotor model updating using resonance and MAC error[J]. Shock and Vibration, 2015, (10): 2- 4
[12]   梅庆, 欧元霞, 高德平. 花键联接刚度及其对转子动力特性的影响[C]//第十届航空发动机结构强度与振动会议. 黄山:[s.n.], 2000: 311–313.
MEI qing, Ou YUAN-xia, GAO De-ping. Spline joint stiffness and its influence on rotor dynamic characteristics [C] // 10th Symposium on Aeroengine Structural Strength and Vibration. Huangshan: [s. n.], 2000: 311–313.
[13]   章伊华, 庞奎, 林丹益, 等 基于接触面特征的螺栓联接刚度研究[J]. 兵工学报, 2017, (1): 195- 201
ZHANG Yi-hua, PANG Kui, LIN Dan-yi, et al Study of bolt joint stiffness based on contact surface characteristics[J]. Acta Armamentarii, 2017, (1): 195- 201
doi: 10.3969/j.issn.1000-1093.2017.01.026
[1] Xiu-fen ZHANG,Yun-fei GAO. Multi-dimensional hierarchical remanufacturability evaluation method for end-of-life mechanical parts[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 954-962.
[2] Teng-yi HUANG,Jin ZHOU,Yan XU,Fan-xu MENG. Modeling of MR damper based on multi-field coupling analysis and influence of structural parameters[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2001-2008.
[3] Feng CHENG,Dong ZHANG,Shuo TANG. Aerodynamics/propulsion coupled modeling and analysis of hypersonic vehicle within wide speed range[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 1006-1018.
[4] REN Song, OUYANG Xun, WU Jian-xun, CHEN Fan, WANG Liang, CHEN Jie. Elastic-swelling analytical model of anhydrite rock considering time-dependent effect[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 896-905.
[5] BAO Teng-fei, LI Jian-ming, ZHAO Jin-lei. Strain transfer analysis between embedded plastic optical fibers and concretes[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2342-2348.
[6] YING Shen-shun, LIN Lv-gao, JI Shi-ming. Optimization design to machine tool structures using experimental verification of modal parameters[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1880-1887.
[7] LUO Yue, YE Shu-jun, WU Ji-chun, ZHANG Yan-hong, JIAO Xun, WANG Han-mei. Global sensitivity analysis of parameters in land subsidence model[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 2007-2013.
[8] FU Jian-xin, SONG Wei-dong, TAN Yu-ye. Influence degree analysis of rock mass' mechanical parameters on roadway's deformation characteristics[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2365-2372.
[9] LIU Kai, CAO Yi, ZHOU Rui, GE Shu-yi, DING Rui. Modeling and optimizing of one-translational and two-rotational LEMs flexure hinge[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2399-2407.
[10] HE Hai bin, YAO Dong wei, WU Feng. Construction and optimization of kinetic mechanism for alternative fuel of COG[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1841-1848.
[11] YIN Jiao-mei, ZHAO Xin-yue, ZHANG Shu-you. Method for designing parts structure to resist harsh environments considering sobol defects sensitivity[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1487-1494.
[12] TAN Jun-hua, LUO Kun, FAN Jian-ren. Verification and analysis of soft-sphere model in fully-resolved simulation of particulate flow[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 344-350.
[13] LIU Jie, WANG Yu-ping. An improved central force optimization based on simplex method[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 2-.
[14] LIU Jie, WANG Yu-ping. An improved central force optimization based on simplex method[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(12): 2115-2122.
[15] CHEN Te-huan, XU Wei-hua, XU Chao, XIE Lei.
Inverse problem solution of pipeline leakage model based on particle swarm optimization and sensitivity analysis
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1850-1855.