Inverse problem solution of pipeline leakage model based on particle swarm optimization and sensitivity analysis" /> Inverse problem solution of pipeline leakage model based on particle swarm optimization and sensitivity analysis" /> Inverse problem solution of pipeline leakage model based on particle swarm optimization and sensitivity analysis" /> 基于PSO的管道泄漏模型反问题求解及敏感性分析
Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Inverse problem solution of pipeline leakage model based on particle swarm optimization and sensitivity analysis
CHEN Te-huan1, XU Wei-hua2, XU Chao2, XIE Lei2
1. Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China; 2. State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1355KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The detection of the pipeline leakage can be formulated as an inverse problem which is solved by using the particle swarm optimization (PSO) method. The sensitivity analysis was conducted with respect to various pipeline parameters (such as Darcy-Weisbach friction factor f and leakage holes flow coefficient C1, etc.). The results of robust corresponding to these parameters were given. A classical pipeline model governed by nonlinear hyperbolic partial differential equations (PDEs) was employed to obtain a numerical simulation based on the experimental platform. Then the PSO algorithm was used to search leakage parameters and perturbations were introduced to implement sensitivity analysis. Results demonstrate that the particle swarm algorithm’s robustness towards parameters decreases with the parameter’s sensitivity increases.



Published: 01 October 2014
CLC:  TP 277  
Cite this article:

CHEN Te-huan, XU Wei-hua, XU Chao, XIE Lei.

Inverse problem solution of pipeline leakage model based on particle swarm optimization and sensitivity analysis
. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(10): 1850-1855.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.10.020     OR     http://www.zjujournals.com/eng/Y2014/V48/I10/1850


基于PSO的管道泄漏模型反问题求解及敏感性分析

为了解决管道泄漏检测与定位问题,采用基于粒子群算法的管道泄漏模型反问题方法求解泄漏点大小和位置,得到该方法在管道参数波动情况下的鲁棒性结果,对管道参数波动进行敏感度分析.由于管道泄漏模型采用偏微分方程描述,给出该模型求解的初始条件和边界条件,根据这些条件和已有实验平台仿真泄漏模型的稳态和动态状况.基于管道泄漏模型,对达西-威斯巴哈摩擦系数f和泄漏小孔的流通系数C1进行敏感度分析.在人为地增加参数扰动后,采用粒子群算法进行反问题求解.从搜索结果可以看出,参数的敏感性越强,粒子群算法对参数的鲁棒性越弱.

[1] 罗刚.我国油气管道总长度已达9.3万km[J].焊管,2012,35(7): 78.
LUO Gang. Oil and gas pipelines in our country has reached the total length of 93000 km [J]. Welded Pipe and Tube, 2012, 35(7): 78.
[2] 张超,杨基春.浅析管道泄漏的原因及对策[J].应用能源技术,2008(8): 710.
ZHANG Chao, YANG Ji-chun. Reasons of pipeline leak and its solutions [J]. Applied Energy Technology, 2008(8): 710.
[3] 蒋仕章,蒲家宁.水力瞬变特征线法和隐式差分法的对比分析[J].油气储运,2001,20(1): 12-14.
JIANG Shi-zhang, PU Jia-ning. Correlation analysis of characteristic method and implicit difference method for fluid transient in long distance pipeline [J]. Oil and Gas Storage and Transportation,2001,20(1): 12-14.
[4] 董东,王桂增.Kalman滤波器在长输管道泄漏诊断中的应用[J].自动化学报,1990,16(4): 303-309.
DONG Dong, WANG Gui-zeng. An application of Kalman filter to leak diagnosis of long-distance transport pipelines [J]. Acta Automatica Sinica, 1900, 16(4): 303-309.
[5] RAHIMAN W,WU Bu-zhou,DING Zheng-tao. Fault detection using high gain observer: application in pipeline system [C]∥ Proceeding of the UKACC International Conference on Control. UK: University of Manchester, 2008.
[6] 王桂增,叶昊.流体输送管道的泄漏检测与定位[M].北京: 清华大学出版社, 2010.
[7] BLAZIC S, MATKO D, GEIGER G. Simple model of a multi-batch driven pipeline [J]. Mathematics and Computers in Simulation, 2004, 64 (6): 617-630.
[8] LIU Ming, ZANG Shu, ZHOU Dong-hua. Fast leak detection and location of gas pipeline based on an adaptive particle filter [J]. International Journal of Applied Mathematics and Computer Science, 2005, 15(4): 541-550.
[9] 严大凡.输油管道设计与管理[M].北京:石油工业出版社,1986: 157-160.
[10] VERDE C. Multi-leak detection and isolation in fluid pipelines [J]. Control Engineering Practice, 2001, 9 (6): 673-682.
[11] CLERC M, KENNEDY J. The particle swarm: explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Transaction on Evolutionary Computation, 2002, 6(1): 58-73.
[12] 翟远征,王金生,苏小四,等.地下水数值模拟中的参数敏感性分析[J].人民黄河,2010,32(12): 99-101.
ZHAI Yuan-zheng, WANG Jin-sheng, SU Xiao-si, et al. Parameter sensitivity analysis of groundwater numerical simulation [J]. Yellow River, 2010, 32(12): 99-101.
[13] FASSO A, PERRI P. Sensitivity analysis [M]. Encyclopedia of Environmentrics, 2002: 1968-1982.
[14] LENHART T, ECKHARDT K, FOHRER N, et al. Comparison of two different approaches of sensitivity analysis [J]. Physics and Chemistry of the Earth, 2002, 27 (9/10): 645-654.
[1] TAN Xiao dong, LUO Jian lu, LI Qing, QIU Jing. Fault evolution testability modeling and prediction for mechanical systems[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 442-448.
[2] LI De-jun, YANG Jun-cheng, LIN Dong-dong, YANG Can-jun, JIN Bo, CHEN Ying. Power monitor system in seafloor junction box
based on MCU and CPLD
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(8): 1369-1374.
[3] YU Bao-hua , YANG Shi-xi, ZHOU Xiao-feng. Optimization  of sensor allocation based on
fault-measurement point mutual information
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(1): 156-162.
[4] DUAN Bin, LIANG Jun, FEI Zheng-shun, YANG Min, HU Bin. Nonlinear semi-parametric modeling mothed based on GA-ANN[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(6): 977-983.
[5] XU Gui-Bin, ZHOU Dong-Hua. Fault prediction for state-dependent fault based on online learning neural network[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(7): 1251-1254.
[6] DU Wen-Chi, WANG Kun, JIAN Feng. Feature space dimensionreduction based process monitoring of solvent dehydration separation process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(7): 1255-1259.
[7] CAO Yu-Peng, TIAN Hua-Min. Information divergence based process fault detection and diagnosis[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(7): 1315-1320.
[8] LIN Yong, ZHOU Xiao-Jun, YANG Xian-Yong, DENG. Intelligent fault diagnosis methods based on bispectrum recognition and artificial immune network[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(10): 1777-1782.