Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (5): 1050-1060    DOI: 10.3785/j.issn.1008-973X.2023.05.021
    
Energy storage sliding mode controller for controlling acceleration power of synchronous generator
Ying ZHAO1,2(),Da WANG1,Jia-hua NI3,Yong-hui LING3,Ji XIANG3,*(),Ting-ting ZHENG1
1. State Grid East Inner Mongolia Electric Power Co. Ltd, Electric Power Research Institute, Hohhot 010010, China
2. Polytechnic Institute, Zhejiang University, Hangzhou 310027, China
3. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(2472KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problem of power angle stability in power systems, an energy storage sliding mode controller was proposed to control the acceleration power of synchronous generator based on the detailed modeling and analysis of the interaction between energy storage and synchronous generator energy. Using the strong robustness of sliding mode control, the speed deviation of the synchronous generator was introduced into the sliding mode surface. The acceleration power of the synchronous generator was controlled to decouple the synchronous generator from the power grid in control. The frequency of the synchronous generator was restored to the rated value. Thus the power angle stability of the system could be enhanced. A nonlinear smooth function was used to replace the sign function in the sliding mode control, then a practical sliding mode controller was obtained to weaken the chattering phenomenon in the sliding mode control. The stability of the proposed controller was analyzed by constructing the Lyapunov function. In the Matlab/Simulink, the performance of the system under disturbance was compared among the parameter feedback linearization controller (PFL), the power oscillation damping controller (POD), the flexible controller (FC) and the proposed method. The results show that the proposed controller has a stability time shortened by more than 30% compared to the aforementioned three methods.



Key wordssynchronous generator      power angle stability      energy storage      sliding mode control      acceleration power     
Received: 19 December 2021      Published: 09 May 2023
CLC:  TM 712  
Fund:  国网内蒙古东部电力公司科技项目(526604210005);国家自然科学基金资助项目(62173295)
Corresponding Authors: Ji XIANG     E-mail: ee_zhaoying@zju.edu.cn;jxiang@zju.edu.cn
Cite this article:

Ying ZHAO,Da WANG,Jia-hua NI,Yong-hui LING,Ji XIANG,Ting-ting ZHENG. Energy storage sliding mode controller for controlling acceleration power of synchronous generator. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 1050-1060.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.05.021     OR     https://www.zjujournals.com/eng/Y2023/V57/I5/1050


控制同步发电机加速功率的储能滑模控制器

针对电力系统功角稳定性问题,在建模分析储能与同步发电机能量交互关系的基础上,提出一种控制同步发电机加速功率的储能滑模控制器. 利用滑模控制的强鲁棒性,将同步发电机的转速偏差引入滑模面,并通过控制同步发电机的加速功率,使同步发电机与电网在控制上解耦,并使同步发电机的频率恢复至额定值,从而增强系统的功角稳定性. 为了削弱滑模控制中的抖振现象,采用非线性光滑函数代替滑模控制中的符号函数,得到实用化的滑模控制器. 通过构造李雅普诺夫函数进行所提控制器的稳定性分析. 在Matlab/Simulink的仿真测试中,对比所提控制器和参数反馈线性化控制器(PFL)、功率振荡阻尼控制器(POD)以及柔性控制器(FC)在扰动下的系统性能,结果表明所提控制器稳定时间比其他3种控制方法缩短30%以上.


关键词: 同步发电机,  功角稳定,  储能,  滑模控制,  加速功率 
Fig.1 Energy storage structure and equivalent circuit under local PQ axis
Fig.2 Equivalent circuit of multi machine power system with energy storage under synchronous rotating coordinate axis
Fig.3 Practical sliding mode controller for energy storage
Fig.4 System structure diagram of four generators and two areas
Fig.5 Simulation results when ${G_1}$voltage reference is increased by 5%
Fig.6 Simulation results when bus 7 occurs fault
控制器 超调量/ (°) 控制器 超调量/ (°)
未安装储能 2.37 FC 2.33
PFL 2.62 所提控制器 2.02
POD 2.25
Tab.1 Overshoot comparison of three-phase short circuit fault
Fig.7 System diagram of 14 generators and 59 buses
储能序号 ${{S_i^{{\rm{ESS}}}}}/{{{P_{{\rm{m}},i}}}}$ ${{S_i^{{\rm{ESS}}}}}/{{P_{\rm{m}}^{{\rm{total}}}}}$ ${{S_i^{{\rm{ESS}}}}}/{{{S^{{\rm{SG,total}}}}}}$
G1端口储能 35.625 2 0.577 5 0.456 2
G2端口储能 11.111 6 1.732 6 1.368 9
G6端口储能 11.111 6 2.021 4 1.597 0
G7端口储能 14.184 4 0.577 5 0.456 2
G8端口储能 12.697 1 0.770 0 0.608 3
G12端口储能 11.110 0 0.288 7 0.228 1
Tab.2 Ratio of different energy storage capacity %
案例 描述
1 t=10 s时,G1端电压参考值增加5%
2 t=10 s时,母线-205发生0.1 s三相短路故障
3 t=10 s时,母线-309发生0.1 s三相短路故障
4 t=10 s时,母线-509发生0.1 s三相短路故障
Tab.3 Test case description of 14 generators and 59 buses
Fig.8 Voltage regulation simulation results of case study 1
Fig.9 Short circuit fault simulation results of case study 2 to 4
[1]   王清, 薛安成, 郑元杰, 等 双馈型风电集中接入对暂态功角稳定的影响分析[J]. 电网技术, 2016, 40 (3): 875- 881
WANG Qing, XUE An-cheng, ZHENG Yuan-jie, et al Impact of DFIG-based wind power integration on the transient stability of power systems[J]. Power System Technology, 2016, 40 (3): 875- 881
doi: 10.13335/j.1000-3673.pst.2016.03.031
[2]   CHOWDHURY M A, HOSSEINZADEH N, POTA H R, et al Transient stability of power system integrated with doubly fed induction generator wind farms[J]. IET Renewable Power Generation, 2015, 9 (2): 184- 194
doi: 10.1049/iet-rpg.2014.0035
[3]   傅质馨, 张晶晶, 崔晓丹, 等 储能支撑光伏参与电网一次调频的优化控制策略研究[J]. 可再生能源, 2021, 39 (11): 1530- 1540
FU Zhi-xin, ZHANG Jing-jing, CUI Xiao-dan, et al Research on optimal control strategy of photovoltaic system supported by energy storage participating in primary frequency regulation of power grid[J]. Proceedings of the CSEE, 2021, 39 (11): 1530- 1540
doi: 10.3969/j.issn.1671-5292.2021.11.017
[4]   姜惠兰, 李政, 张驰, 等 SMES-DFIG提高多机系统暂态功角稳定性的控制策略[J]. 高电压技术, 2021, 47 (3): 993- 1001
JIANG Hui-lan, LI Zheng, ZHANG Chi, et al Control strategy of SMES-DFIG for improving transient power angle stability of multi-machine system[J]. High Voltage Engineering, 2021, 47 (3): 993- 1001
doi: 10.13336/j.1003-6520.hve.20191421
[5]   杨海涛, 吉平, 苗淼, 等. 未来中国特高压电网结构形态与电源组成相互关系分析[J]. 电力系统自动化, 2018, 42(6): 9­17.
YANG Hai-tao, JI Ping, MIAO Miao, et al. Analysis on interrelationship between future UHV power grid structural form and power source composition in China [J]. Automation of Electric Power Systems, 2018, 42(6): 9­17.
[6]   BLOOM A, HELMAN U, HOLTTINEN H, et al. It's indisputable: five facts about planning and operating modern power systems [J]. IEEE Power and Energy Magazine, 2017, 15(6): 22­30.
[7]   ZHU Y, LIU C, KUN K, et al. Optimization of battery energy storage to improve power system oscillation damping [J]. IEEE Transactions on Sustainable Energy, 2019, 10(3): 1015­1024.
[8]   FARRAJ A, HAMMAND E, KUNDUR D. A cyber enabled stabilizing control scheme for resilient smart grid systems [J]. IEEE Transactions on Smart Grid, 2016, 7(4): 1856­1865.
[9]   FARRAJ A, HAMMAND E, KUNDUR D. On the impact of cyber-attacks on data integrity in storage based transient stability control [J]. IEEE Transactions on Industrial Informatics, 2017, 13(6): 3322­3333.
[10]   FARRAJ A, HAMMAND E, KUNDUR D. On the use of energy storage systems and linear feedback optimal control for transient stability [J]. IEEE Transactions on Industrial Informatics, 2017, 13(4): 1575­1585.
[11]   AYAR M, OBUZ S, TREVIZAN R, et al. A distributed control approach for enhancing smart grid transient stability and resilience [J]. IEEE Transactions on Smart Grid, 2017, 8(6): 3035­3044.
[12]   LUCIA W, GHEITASI K, BAGHERZADEH M. A low computationally demanding model predictive control strategy for robust transient stability in smart grid [C]// 2018 IEEE Conference on Decision and Control (CDC). USA: Miami Beach, FL, IEEE, 2018: 6013­6018.
[13]   FARRAJ A, HAMMAD E, KUNDUR D. A storage based multiagent regulation framework for smart grid resilience [J]. IEEE Transactions on Industrial Informatics, 2018, 14(9): 3859­3869.
[14]   孙立明, 杨博. 超级电容储能系统的无源分数阶滑模控制设计[J]. 电力系统保护与控制, 2020, 48(16): 76­83.
SUN Li-ming, YANG Bo. Passive fractional-order sliding-mode control design of a super capacitor energy storage system [J]. Power System Protection and Control, 2020, 48(16): 76­83.
[15]   杨博, 王俊婷, 王景博, 等. 超导磁储能系统自适应分数阶滑模控制设计[J]. 电网技术, 2020, 44(5): 1714-1722.
YANG Bo, WANG Jun-ting, WANG Jing-bo, et al. Adaptive fractional-order sliding-mode control design of super conducting magnetic energy storage systems [J]. Power System Technology, 2020, 44(5): 1714­1722.
[16]   ABEYWARDANA D B W, HREDZAK B, AGELIDIS V G. A fixed­frequency sliding mode controller for a boost­inverter­based battery­supercapacitor hybrid energy storage system [J]. IEEE Transactions on Power Electronics, 2017, 32(1): 668­680.
[17]   KANCHANAHARUTHAI A, MUJJALINVIMUT E. An improved backstepping sliding mode control for power systems with superconducting magnetic energy storage system [J]. International Journal of Innovative Computing, Information and Control, 2019, 15(3): 891­904.
[18]   NI J, LIU L, LIU C, et al. Fast fixed time nonsingular terminal sliding mode control and its application to chaos suppression in power system [J]. IEEE Transactions on Circuits and Systems II: Express briefs, 2017, 64(2): 151­155.
[19]   GHAHREMANI E, KAMWA I. Online state estimation of a synchronous generator using unscented Kalman filter from phasor measurements units [J]. IEEE Transactions on Energy Conversion, 2011, 26(4): 1099­1108.
[20]   卢强, 梅生伟, 孙元章. 电力系统非线性控制[M]. 北京: 清华大学出版社, 2008: 237-244.
[21]   YAZDANI A, IRAVANI R. Voltage sourced converters in power systems [M]. USA: Wiley Online Library, 2010: 155-172.
[22]   UTKIN V, GULDNER J, SHI J. Sliding mode control in electro mechanical systems [M]. USA: CRC Press, 2017: 378-388.
[23]   LIU J, WANG X. Advanced sliding mode control for mechanical systems [M]. Beijing: Springer, 2012: 137-152.
[24]   KUNDUR P, BALU N J, LAUBY M G. Power system stability and control [M]. USA: McGraw Hill New York, 1994: 689-721.
[25]   KAMWA I. Performance of three PSS for interarea oscillations [EB/OL]. [2021-02-01]. https://www.mathworks.com/help/physmod/sps/examples/performance-of-three-pss-for-interarea-oscillations.html.
[26]   LING Y, LI Y, XIANG J. Flexible generator: generation unit integrated by energy storage system and synchronous generator [J]. IEEE Transactions on Power Systems, 2020, 35(6): 4263­4271.
[1] Rui YU,Xue-feng XU,Hua ZHOU,Hua-yong YANG. Improved switching-gain adaptation based sliding mode control for trajectory tracking of underactuated unmanned surface vessels[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 436-443.
[2] Guo-peng ZHANG,Zi-han LI,Hao WANG,zheng ZHENG. Isolated AC-DC solid state transformer front and rear stages integrated sliding mode control[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 622-630.
[3] Bing ZHOU,Yang-yi LIU,Xiao-jian WU,Tian CHAI,Yong-qiang ZENG,Qian-xi PAN. Integrated control of active front steering and direct yaw moment[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2330-2339.
[4] Qing-long MENG,Xiao-xiao REN,Wen-qiang WANG,Yang LI,Cheng-yan XIONG. HVAC demand response strategy experiment and simulation considering active energy storage[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1175-1184.
[5] Jing LI,Chen WANG,Jia-xu ZHANG. Wheel slip tracking control of vehicle based on adaptive fast terminal sliding mode control method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 169-176.
[6] Jian LI,Wen-cheng TANG. Sliding mode control for ball screw drives based on H∞ theory[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1497-1504.
[7] Yi-feng ZHU,Dang-jian WU,Bing-yang BAI,Hao YUE. Sliding mode proportional integral resonance control for single-phase five-level pulse rectifier[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1578-1586.
[8] Zhao-meng CHEN,Xiao-jun ZHOU,Chen-long YANG,Hao-liang LV,Jie-chao WEI. Emergency braking control strategy for high speed electric drive tracked vehicle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 442-449.
[9] WAGN Yao-yao, GU Lin-yi, CHEN Bai, WU Hong-tao. Nonsingular terminal sliding mode control of underwater vehicle-manipulator system[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 934-942.
[10] LI Xin, XIAO Long, LIU Guo-liang, SHAO Yu-ting, CHEN Guo-zhu. VSG power oscillation suppression strategies based on phase compensation and cross feedforward compensation[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 569-576.
[11] SHAO Xue-feng, FENG Biao, HU Nan, HUANG Yuan-kai, ZHU Zi-qin, JIANG Ping, FAN Li-wu. Non-isothermal characterization on thermal storage/release performance of sugar alcohols and their binary eutectic mixtures[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 50-58.
[12] ZHOU Hua, CHEN Li, DUAN Deng-ping. Sliding mode control of trajectory tracking for underactuated aerostat[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1412-1420.
[13] LI Guo-fei, TENG Qing-fang, WANG Chuan-lu, ZHANG Ya-qin. FCS-MPC strategy with sliding mode control for PMSM systems driven by four-switch inverters[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 620-627.
[14] GUO Fan, WEI Jian-hua, ZHANG Qiang, XIONG Yi. Hybrid position/pressure control of hydraulic press based on cascade controller[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 1937-1947.
[15] PAN Ning, YU Liang yao, ZHANG Lei, SONG Jian, ZHANG Yong hui. Anti-lock braking control in coordinated braking system considering braking comfort[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 9-16.