|
|
Energy storage sliding mode controller for controlling acceleration power of synchronous generator |
Ying ZHAO1,2(),Da WANG1,Jia-hua NI3,Yong-hui LING3,Ji XIANG3,*(),Ting-ting ZHENG1 |
1. State Grid East Inner Mongolia Electric Power Co. Ltd, Electric Power Research Institute, Hohhot 010010, China 2. Polytechnic Institute, Zhejiang University, Hangzhou 310027, China 3. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract Aiming at the problem of power angle stability in power systems, an energy storage sliding mode controller was proposed to control the acceleration power of synchronous generator based on the detailed modeling and analysis of the interaction between energy storage and synchronous generator energy. Using the strong robustness of sliding mode control, the speed deviation of the synchronous generator was introduced into the sliding mode surface. The acceleration power of the synchronous generator was controlled to decouple the synchronous generator from the power grid in control. The frequency of the synchronous generator was restored to the rated value. Thus the power angle stability of the system could be enhanced. A nonlinear smooth function was used to replace the sign function in the sliding mode control, then a practical sliding mode controller was obtained to weaken the chattering phenomenon in the sliding mode control. The stability of the proposed controller was analyzed by constructing the Lyapunov function. In the Matlab/Simulink, the performance of the system under disturbance was compared among the parameter feedback linearization controller (PFL), the power oscillation damping controller (POD), the flexible controller (FC) and the proposed method. The results show that the proposed controller has a stability time shortened by more than 30% compared to the aforementioned three methods.
|
Received: 19 December 2021
Published: 09 May 2023
|
|
Fund: 国网内蒙古东部电力公司科技项目(526604210005);国家自然科学基金资助项目(62173295) |
Corresponding Authors:
Ji XIANG
E-mail: ee_zhaoying@zju.edu.cn;jxiang@zju.edu.cn
|
控制同步发电机加速功率的储能滑模控制器
针对电力系统功角稳定性问题,在建模分析储能与同步发电机能量交互关系的基础上,提出一种控制同步发电机加速功率的储能滑模控制器. 利用滑模控制的强鲁棒性,将同步发电机的转速偏差引入滑模面,并通过控制同步发电机的加速功率,使同步发电机与电网在控制上解耦,并使同步发电机的频率恢复至额定值,从而增强系统的功角稳定性. 为了削弱滑模控制中的抖振现象,采用非线性光滑函数代替滑模控制中的符号函数,得到实用化的滑模控制器. 通过构造李雅普诺夫函数进行所提控制器的稳定性分析. 在Matlab/Simulink的仿真测试中,对比所提控制器和参数反馈线性化控制器(PFL)、功率振荡阻尼控制器(POD)以及柔性控制器(FC)在扰动下的系统性能,结果表明所提控制器稳定时间比其他3种控制方法缩短30%以上.
关键词:
同步发电机,
功角稳定,
储能,
滑模控制,
加速功率
|
|
[1] |
王清, 薛安成, 郑元杰, 等 双馈型风电集中接入对暂态功角稳定的影响分析[J]. 电网技术, 2016, 40 (3): 875- 881 WANG Qing, XUE An-cheng, ZHENG Yuan-jie, et al Impact of DFIG-based wind power integration on the transient stability of power systems[J]. Power System Technology, 2016, 40 (3): 875- 881
doi: 10.13335/j.1000-3673.pst.2016.03.031
|
|
|
[2] |
CHOWDHURY M A, HOSSEINZADEH N, POTA H R, et al Transient stability of power system integrated with doubly fed induction generator wind farms[J]. IET Renewable Power Generation, 2015, 9 (2): 184- 194
doi: 10.1049/iet-rpg.2014.0035
|
|
|
[3] |
傅质馨, 张晶晶, 崔晓丹, 等 储能支撑光伏参与电网一次调频的优化控制策略研究[J]. 可再生能源, 2021, 39 (11): 1530- 1540 FU Zhi-xin, ZHANG Jing-jing, CUI Xiao-dan, et al Research on optimal control strategy of photovoltaic system supported by energy storage participating in primary frequency regulation of power grid[J]. Proceedings of the CSEE, 2021, 39 (11): 1530- 1540
doi: 10.3969/j.issn.1671-5292.2021.11.017
|
|
|
[4] |
姜惠兰, 李政, 张驰, 等 SMES-DFIG提高多机系统暂态功角稳定性的控制策略[J]. 高电压技术, 2021, 47 (3): 993- 1001 JIANG Hui-lan, LI Zheng, ZHANG Chi, et al Control strategy of SMES-DFIG for improving transient power angle stability of multi-machine system[J]. High Voltage Engineering, 2021, 47 (3): 993- 1001
doi: 10.13336/j.1003-6520.hve.20191421
|
|
|
[5] |
杨海涛, 吉平, 苗淼, 等. 未来中国特高压电网结构形态与电源组成相互关系分析[J]. 电力系统自动化, 2018, 42(6): 917. YANG Hai-tao, JI Ping, MIAO Miao, et al. Analysis on interrelationship between future UHV power grid structural form and power source composition in China [J]. Automation of Electric Power Systems, 2018, 42(6): 917.
|
|
|
[6] |
BLOOM A, HELMAN U, HOLTTINEN H, et al. It's indisputable: five facts about planning and operating modern power systems [J]. IEEE Power and Energy Magazine, 2017, 15(6): 2230.
|
|
|
[7] |
ZHU Y, LIU C, KUN K, et al. Optimization of battery energy storage to improve power system oscillation damping [J]. IEEE Transactions on Sustainable Energy, 2019, 10(3): 10151024.
|
|
|
[8] |
FARRAJ A, HAMMAND E, KUNDUR D. A cyber enabled stabilizing control scheme for resilient smart grid systems [J]. IEEE Transactions on Smart Grid, 2016, 7(4): 18561865.
|
|
|
[9] |
FARRAJ A, HAMMAND E, KUNDUR D. On the impact of cyber-attacks on data integrity in storage based transient stability control [J]. IEEE Transactions on Industrial Informatics, 2017, 13(6): 33223333.
|
|
|
[10] |
FARRAJ A, HAMMAND E, KUNDUR D. On the use of energy storage systems and linear feedback optimal control for transient stability [J]. IEEE Transactions on Industrial Informatics, 2017, 13(4): 15751585.
|
|
|
[11] |
AYAR M, OBUZ S, TREVIZAN R, et al. A distributed control approach for enhancing smart grid transient stability and resilience [J]. IEEE Transactions on Smart Grid, 2017, 8(6): 30353044.
|
|
|
[12] |
LUCIA W, GHEITASI K, BAGHERZADEH M. A low computationally demanding model predictive control strategy for robust transient stability in smart grid [C]// 2018 IEEE Conference on Decision and Control (CDC). USA: Miami Beach, FL, IEEE, 2018: 60136018.
|
|
|
[13] |
FARRAJ A, HAMMAD E, KUNDUR D. A storage based multiagent regulation framework for smart grid resilience [J]. IEEE Transactions on Industrial Informatics, 2018, 14(9): 38593869.
|
|
|
[14] |
孙立明, 杨博. 超级电容储能系统的无源分数阶滑模控制设计[J]. 电力系统保护与控制, 2020, 48(16): 7683. SUN Li-ming, YANG Bo. Passive fractional-order sliding-mode control design of a super capacitor energy storage system [J]. Power System Protection and Control, 2020, 48(16): 7683.
|
|
|
[15] |
杨博, 王俊婷, 王景博, 等. 超导磁储能系统自适应分数阶滑模控制设计[J]. 电网技术, 2020, 44(5): 1714-1722. YANG Bo, WANG Jun-ting, WANG Jing-bo, et al. Adaptive fractional-order sliding-mode control design of super conducting magnetic energy storage systems [J]. Power System Technology, 2020, 44(5): 17141722.
|
|
|
[16] |
ABEYWARDANA D B W, HREDZAK B, AGELIDIS V G. A fixedfrequency sliding mode controller for a boostinverterbased batterysupercapacitor hybrid energy storage system [J]. IEEE Transactions on Power Electronics, 2017, 32(1): 668680.
|
|
|
[17] |
KANCHANAHARUTHAI A, MUJJALINVIMUT E. An improved backstepping sliding mode control for power systems with superconducting magnetic energy storage system [J]. International Journal of Innovative Computing, Information and Control, 2019, 15(3): 891904.
|
|
|
[18] |
NI J, LIU L, LIU C, et al. Fast fixed time nonsingular terminal sliding mode control and its application to chaos suppression in power system [J]. IEEE Transactions on Circuits and Systems II: Express briefs, 2017, 64(2): 151155.
|
|
|
[19] |
GHAHREMANI E, KAMWA I. Online state estimation of a synchronous generator using unscented Kalman filter from phasor measurements units [J]. IEEE Transactions on Energy Conversion, 2011, 26(4): 10991108.
|
|
|
[20] |
卢强, 梅生伟, 孙元章. 电力系统非线性控制[M]. 北京: 清华大学出版社, 2008: 237-244.
|
|
|
[21] |
YAZDANI A, IRAVANI R. Voltage sourced converters in power systems [M]. USA: Wiley Online Library, 2010: 155-172.
|
|
|
[22] |
UTKIN V, GULDNER J, SHI J. Sliding mode control in electro mechanical systems [M]. USA: CRC Press, 2017: 378-388.
|
|
|
[23] |
LIU J, WANG X. Advanced sliding mode control for mechanical systems [M]. Beijing: Springer, 2012: 137-152.
|
|
|
[24] |
KUNDUR P, BALU N J, LAUBY M G. Power system stability and control [M]. USA: McGraw Hill New York, 1994: 689-721.
|
|
|
[25] |
KAMWA I. Performance of three PSS for interarea oscillations [EB/OL]. [2021-02-01]. https://www.mathworks.com/help/physmod/sps/examples/performance-of-three-pss-for-interarea-oscillations.html.
|
|
|
[26] |
LING Y, LI Y, XIANG J. Flexible generator: generation unit integrated by energy storage system and synchronous generator [J]. IEEE Transactions on Power Systems, 2020, 35(6): 42634271.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|