|
|
Improved switching-gain adaptation based sliding mode control for trajectory tracking of underactuated unmanned surface vessels |
Rui YU1( ),Xue-feng XU1,2,Hua ZHOU1,*( ),Hua-yong YANG1 |
1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China 2. Jiujiang Branch of Tianjin Navigation Instrument Research Institute, Jiujiang 332007, China |
|
|
Abstract An improved switching-gain adaptation (ISGA) based sliding mode control algorithm was proposed for trajectory tracking of underactuated unmanned surface vessels (USVs), aiming to the challenges which the parametric uncertainties and nonlinearity of disturbance bring to the precise trajectory tracking control of underactuated USVs. In the algorithm, the backstepping and PI sliding mode control were combined to ensure an underactuated USV tracking and maintain the desired trajectory. In addition, an ISGA algorithm based on ideal switching gain was adopted to improve the robustness and suppress the chattering phenomenon. The global exponential stability of the trajectory tracking system was verified by the Lyapunov’s direct method. Simulation results show that the algorithm has the advantages of strong robustness, weak chattering and high accuracy. Compared with the two state-of-the-art algorithms, the position-attitude control accuracy of the proposed algorithm is improved by more than 25.0%.
|
Received: 30 April 2021
Published: 29 March 2022
|
|
Fund: 国家自然科学基金资助项目(51890885);国家重点研发计划资助项目(2018YFB2001203);国家自然科学基金创新研究群体项目(51821093) |
Corresponding Authors:
Hua ZHOU
E-mail: yuruismail@163.com;hzhou@zju.edu.cn
|
基于改进切换增益自适应率的欠驱动USV滑模轨迹跟踪控制
针对参数的不确定性和外界干扰的非线性给欠驱动无人艇(USV)的精确轨迹跟踪控制带来的挑战,提出基于改进切换增益自适应率(ISGA)的欠驱动USV滑模轨迹跟踪控制算法. 该算法结合反步法和PI滑模控制,以保证欠驱动USV跟踪并保持期望的轨迹;采用基于理想增益的ISGA算法,以提高系统的鲁棒性和抑制滑模抖振现象. 借助李雅普诺夫直接法证明轨迹跟踪控制系统的全局指数稳定性. 仿真结果显示,所提算法具有鲁棒性强、滑模抖振弱和控制精度高等优点. 相较2种先进的轨迹跟踪控制算法,所提算法的位姿控制精度提高超过25.0%.
关键词:
欠驱动无人艇,
改进切换增益自适应率(ISGA),
滑模控制,
轨迹跟踪,
指数收敛
|
|
[1] |
GUO G, GAO Z, DONG K Prescribed-time formation control of surface vessels with asymmetric constraints on LOS range and bearing angles[J]. Nonlinear Dynamics, 2021, 104 (4): 3701- 3712
doi: 10.1007/s11071-021-06462-8
|
|
|
[2] |
SHAO G M, MA Y, MALEKIAN R, et al A novel cooperative platform design for coupled USV-UAV systems[J]. IEEE Transactions on Industrial Informatics, 2019, 15 (9): 4913- 4922
doi: 10.1109/TII.2019.2912024
|
|
|
[3] |
陈英龙, 赵勇刚, 周华, 等 大型中层拖网网具系统的仿真研究[J]. 浙江大学学报:工学版, 2014, 48 (4): 625- 632 CHEN Ying-long, ZHAO Yong-gang, ZHOU Hua, et al Simulation study of large mid-water trawl system[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (4): 625- 632
|
|
|
[4] |
GONZALEZ-GARCIA A, CASTA?EDA H Guidance and control based on adaptive sliding mode strategy for a USV subject to uncertainties[J]. IEEE Journal of Oceanic Engineering, 2021, 46 (4): 1144- 1154
doi: 10.1109/JOE.2021.3059210
|
|
|
[5] |
HOSSEIN M, HAMID J, HAMID A, et al Developing a navigation, guidance and obstacle avoidance algorithm for an unmanned surface vehicle (USV) by algorithms fusion[J]. Ocean Engineering, 2018, 159: 56- 65
doi: 10.1016/j.oceaneng.2018.04.018
|
|
|
[6] |
ZHAO Y, QI X, MA Y, et al Path following optimization for an underactuated USV using smoothly-convergent deep reinforcement learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22 (10): 6208- 6220
|
|
|
[7] |
史剑光, 李德骏, 杨灿军, 等 水下自主机器人接驳碰撞过程分析[J]. 浙江大学学报:工学版, 2015, 49 (3): 497- 504 SHI Jian-guang, LI De-jun, YANG Can-jun, et al Impact analysis during docking process of autonomous underwater vehicle[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (3): 497- 504
|
|
|
[8] |
GUO G, ZHANG P Asymptotic stabilization of USVs with actuator dead-zones and yaw constraints based on fixed-time disturbance observer[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (1): 302- 316
doi: 10.1109/TVT.2019.2955020
|
|
|
[9] |
ZHANG P, GUO G Fixed-time switching control of underactuated surface vessels with dead-zones: global exponential stabilization[J]. Journal of the Franklin Institute, 2020, 357 (16): 11217- 11241
doi: 10.1016/j.jfranklin.2019.05.030
|
|
|
[10] |
LIU W W, LIU Y C, BUCKNALL R A robust localization method for unmanned surface vehicle (USV) navigation using fuzzy adaptive Kalman filtering[J]. IEEE Access, 2019, 7: 46071- 46083
doi: 10.1109/ACCESS.2019.2909151
|
|
|
[11] |
DO K D Global robust adaptive path-tracking control of underactuated ships under stochastic disturbances[J]. Ocean Engineering, 2016, 111: 267- 278
doi: 10.1016/j.oceaneng.2015.10.038
|
|
|
[12] |
张成举, 王聪, 曹伟, 等 欠驱动USV神经网络自适应轨迹跟踪控制[J]. 哈尔滨工业大学学报, 2020, 52 (12): 1- 7 ZHANG Cheng-ju, WANG Cong, CAO Wei, et al Adaptive neural network trajectory tracking control for underactuated unmanned surface vehicle[J]. Journal of Harbin Institute of Technology, 2020, 52 (12): 1- 7
doi: 10.11918/201905049
|
|
|
[13] |
PAN C Z, LAI X Z, YANG S X, et al A bioinspired neural dynamics-based approach to tracking control of autonomous surface vehicles subject to unknown ocean currents[J]. Neural Computing and Applications, 2015, 26: 1929- 1938
doi: 10.1007/s00521-015-1839-6
|
|
|
[14] |
LIU L, WANG D, PENG Z H Path following of marine surface vehicles with dynamical uncertainty and time-varying ocean disturbances[J]. Neurcomputing, 2016, 173: 799
doi: 10.1016/j.neucom.2015.08.033
|
|
|
[15] |
DONG Z P, WAN L, LI Y M, et al Trajectory tracking control of underactuated USV based on modified backstepping approach[J]. International Journal of Naval Architecture and Ocean Engineering, 2015, 7 (5): 817- 832
doi: 10.1515/ijnaoe-2015-0058
|
|
|
[16] |
ZHOU W, WANG Y, AHN C K, et al Adaptive fuzzy backstepping-based formation control of unmanned surface vehicles with unknown model nonlinearity and actuator saturation[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (12): 14749- 14764
doi: 10.1109/TVT.2020.3039220
|
|
|
[17] |
ASHRAFIUON H, MUSKE K R, MCNINCH L C, et al Sliding-mode tracking control of surface vessels[J]. IEEE Transactions on Industrial Electronics, 2008, 55 (11): 4004- 4012
doi: 10.1109/TIE.2008.2005933
|
|
|
[18] |
XU J, WANG M, QIAO L Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles[J]. Ocean Engineering, 2015, 105: 54- 63
doi: 10.1016/j.oceaneng.2015.06.022
|
|
|
[19] |
SUN Z, ZHANG G, QIAO L, et al Robust adaptive trajectory tracking control of underactuated unmanned surface vessel in fields of marine practice[J]. Journal of Marine Science and Technology, 2018, 23: 950- 957
doi: 10.1007/s00773-017-0524-0
|
|
|
[20] |
SUN Z, ZHANG G, YANG J, et al Research on the sliding mode control for underactuated unmanned surface vessels via parameter estimation[J]. Nonlinear Dynamics, 2018, 91: 1163- 1175
doi: 10.1007/s11071-017-3937-8
|
|
|
[21] |
KAO Y, XIE J, WANG C, et al A sliding mode approach to H∞ non-fragile observer-based control design for uncertain Markovian neutral-type stochastic systems [J]. Automatica, 2015, 52: 218- 226
doi: 10.1016/j.automatica.2014.10.095
|
|
|
[22] |
LEI Q, BOWEN Y, DEFENG W, et al Design of three exponentially convergent robust controllers for the trajectory tracking of autonomous underwater vehicles[J]. Ocean Engineering, 2017, 134: 157- 172
doi: 10.1016/j.oceaneng.2017.02.006
|
|
|
[23] |
LU Y S Sliding-mode disturbance observer with switching-gain adaptation and its application to optical disk drives[J]. IEEE Transactions on Industrial Electronics, 2009, 56 (9): 3743- 3750
doi: 10.1109/TIE.2009.2025719
|
|
|
[24] |
QU Y, XIAO B, FU Z, et al Trajectory exponential tracking control of unmanned surface ships with external disturbance and system uncertainties[J]. ISA Transactions, 2018, 78: 47- 55
doi: 10.1016/j.isatra.2017.12.020
|
|
|
[25] |
BAI K Q, GONG X T, CHEN S H, et al Sliding mode nonlinear disturbance observer-based adaptive back-stepping control of a humanoid robotic dual manipulator[J]. Robotica, 2018, 36 (11): 1728- 1742
doi: 10.1017/S026357471800067X
|
|
|
[26] |
ZHAO X H, ZHANG X Y, YE X F, et al Sliding mode controller design for supercavitating vehicles[J]. Ocean Engineering, 2019, 184: 173- 183
doi: 10.1016/j.oceaneng.2019.04.066
|
|
|
[27] |
劳立明. 基于直驱电液技术的有杆抽油系统运动控制与节能控制研究[D]. 杭州: 浙江大学, 2017: 47-90. LAO Li-ming. Research on motion control and energy-saving control of sucker rod pumping systems using direct-driven electro-hydraulic technology [D]. Hangzhou: Zhejiang University, 2017: 47-90.
|
|
|
[28] |
WANG N, SU S F Finite-time unknown observer-based interactive trajectory tracking control of asymmetric underactuated surface vehicles[J]. IEEE Transactions on Control Systems Technology, 2019, 99 (2): 794- 803
|
|
|
[29] |
SINISTERRA A J, DHANAK M R, ELLENRIEDER K V Stereovision-based target tracking system for USV operations[J]. Ocean Engineering, 2017, 133: 197- 214
doi: 10.1016/j.oceaneng.2017.01.024
|
|
|
[30] |
FOSSEN T I. Marine control systems: guidance, navigation and control of ships rigs and underwater vehicles [M]. Trondheim: Marine Cybernetics, 2002: 35-120.
|
|
|
[31] |
KHALIL H K. Nonlinear systems [M]. Beijing: Publishing House of Electronics Industry, 2012: 123-125.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|