A terminal sliding mode control method with adaptive fuzzy system was proposed for the robotic manipulator trajectory tracking control problem with a large amount of uncertain information such as modeling errors and external disturbances. The nonsingular terminal sliding surface was adopted to ensure global fast convergence of state variables during sliding stage in this method. An improved double exponential reaching law with variable coefficients was used to improve the convergence rates of state variables and suppress the chattering of controller output during the approaching stage. An adaptive fuzzy multiple-input multiple-output (MIMO) system was utilized to approximate the system model and external disturbance, in order to get rid of the dependence on model information and improve trajectory tracking accuracy as well as anti-disturbance performance. The closed-loop stability and finite-time convergence of the system were proved by constructing Lyapunov functions. The Denso VP6242G serial manipulator was taken as the controlled object for comparative simulation and experiment. Results showed that the designed controller can effectively improve the trajectory tracking accuracy and anti-disturbance ability, and alleviate the chattering phenomenon in the controller output as well.
Ai-guo WU,Shao-hua WU,Na DONG. Nonsingular fast terminal sliding model fuzzy control of robotic manipulators. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 862-871.
Fig.2Angle tracking error of joint 1 in simulation
Fig.3Angle tracking error of joint 2 in simulation
Fig.4Angle tracking error of joint 3 in simulation
控制器
L(e1)
L(e2)
L(e3)
SMC
0.263 4
0.229 6
0.069 8
STSM
0.164 9
0.110 7
0.042 7
FTSM
0.017 0
0.034 8
0.007 2
FTSM_Fuzzy
0.013 8
0.010 9
0.004 1
Tab.1Mean square values of angle tracking errors under different controllers rad
Fig.5Controller output of joint 1 in simulation
Fig.6Controller output of joint 2 in simulation
Fig.7Controller output of joint 3 in simulation
Fig.8Denso experimental platform
Fig.9Angle tracking error of joint 1 in experiment
Fig.10Angle tracking error of joint 2 in experiment
Fig.11Angle tracking error of joint 3 in experiment
Fig.13Controller output of joint 2 in experiment
Fig.12Controller output of joint 1 in experiment
Fig.14Controller output of joint 3 in experiment
[1]
ZHAO J B, WANG X, ZHANG G, et al Design and implementation of membrane controllers for trajectory tracking of nonholonomic wheeled mobile robots[J]. Integrated Computer Aided Engineering, 2015, 23 (1): 15- 30
doi: 10.3233/ICA-150503
[2]
CUONG P V, WANG Y N Adaptive trajectory tracking neural network control with robust compensator for robot manipulators[J]. Neural Computing and Applications, 2016, 27 (2): 525- 536
doi: 10.1007/s00521-015-1873-4
[3]
HUANG D, ZHAI J, AI W, et al Disturbance observer-based robust control for trajectory tracking of wheeled mobile robots[J]. Neurocomputing, 2016, 198 (C): 74- 79
[4]
高为炳. 变结构控制的理论及设计方法[M]. 北京: 科学出版社, 1995: 211–225.
[5]
姜立标, 吴中伟 基于趋近律滑模控制的智能车辆轨迹跟踪研究[J]. 农业机械学报, 2018, 49 (3): 381- 386 JIANG Li-biao, WU Zhong-wei Sliding mode control for intelligent vehicle trajectory tracking based on reaching law[J]. Transactions of the Chinese Society of Agricultural Machinery, 2018, 49 (3): 381- 386
[6]
李慧洁, 蔡远利 基于双幂次趋近律的滑模控制方法[J]. 控制与决策, 2016, 31 (3): 498- 502 LI Hui-jie, CAI Yuan-li Sliding mode control with double power reaching law[J]. Control and Decision, 2016, 31 (3): 498- 502
[7]
MAN Z H, PAPLINSKI A P, WU H R A robust adaptive terminal sliding mode control for rigid robotic manipulators[J]. IEEE Transactions on Automatic Control, 1999, 24 (1): 23- 41
[8]
FENG Y, YU X H, MAN Z H Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38 (12): 2159- 2167
doi: 10.1016/S0005-1098(02)00147-4
[9]
袁雷, 肖飞, 沈建清, 等 基于扰动观测器的不确定非线性系统非奇异终端滑模控制[J]. 控制与决策, 2014, 29 (2): 353- 357 YUAN Lei, XIAO Fei, SHEN Jian-qing, et al Nonsingular terminal sliding mode control with disturbance observer for uncertain nonlinear systems[J]. Control and Decision, 2014, 29 (2): 353- 357
[10]
李升波, 李克强, 王建强, 等 非奇异快速的终端滑模控制方法[J]. 信息与控制, 2009, 38 (1): 1- 8 LI Sheng-bo, LI Ke-qiang, WANG Jian-qiang, et al Nonsingular and fast terminal sliding mode control method[J]. Information and Control, 2009, 38 (1): 1- 8
doi: 10.3969/j.issn.1002-0411.2009.01.001
[11]
李升波, 李克强, 王建强, 等 非奇异快速的终端滑模控制方法及其跟车控制应用[J]. 控制理论与应用, 2010, 27 (5): 543- 550 LI Sheng-bo, LI Ke-qiang, WANG Jian-qiang, et al Nonsingular and fast terminal sliding mode control method[J]. Control Theory and Applications, 2010, 27 (5): 543- 550
[12]
LI T H S, HUANG Y C MIMO adaptive fuzzy terminal sliding-mode controller for robotic manipulators[J]. Information Sciences, 2010, 180 (23): 4641- 4660
doi: 10.1016/j.ins.2010.08.009
[13]
AMER A F, SALLAM E A, ELAWADY W M Adaptive fuzzy sliding mode control using supervisory fuzzy control for 3 DOF planar robot manipulators[J]. Applied Soft Computing Journal, 2011, 11 (8): 4943- 4953
doi: 10.1016/j.asoc.2011.06.005
[14]
SOLTANPOUR M R, KHOOBAN M H A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator[J]. Nonlinear Dynamics, 2013, 74 (1/2): 467- 478
[15]
YOO B K, HAM W C Adaptive control of robot manipulator using fuzzy compensator[J]. IEEE Transactions on Fuzzy Systems, 2000, 8 (2): 186- 199
doi: 10.1109/91.842152
[16]
TRAN M D, KANG H J A novel adaptive finite-time tracking control for robotic manipulators using nonsingular terminal sliding mode and RBF neural networks[J]. International Journal of Precision Engineering and Manufacturing, 2016, 17 (7): 863- 870
doi: 10.1007/s12541-016-0105-x
[17]
WANG L X. Fuzzy systems are universal approximators [C]// IEEE International Conference on Fuzzy Systems. California: IEEE, 1992: 1163–1170.
[18]
MARKS G, SHTESSEL Y, GRATT H, et al. Effects of high order sliding mode guidance and observers on hit-to-kill interceptions [C]// AIAA Guidance, Navigation, and Control Conference and Exhibit. California: AIAA, 2006: 2005–5967.
[19]
丁力, 马瑞, 单文桃, 等 小型无人直升机航向线性自抗扰控制[J]. 农业机械学报, 2017, 48 (5): 22- 27 DING Li, MA Rui, SHAN Wen-tao, et al Linear active disturbance rejection control for yaw channel of small-scale unmanned helicopter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48 (5): 22- 27