Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (1): 125-132    DOI: 10.3785/j.issn.1008-973X.2018.01.017
Automatic Technology     
Dynamic compliant control of six DOF assembly robot
PAN Li, BAO Guan-jun, XU Fang, ZHANG Li-bin
Key Laboratory of E & M, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
Download:   PDF(1749KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A dynamic complaint control was presented in order to improve assembly accuracy and flexibility for 6 DOF assembly industrial robot. Then the industrial robot can not only track reference trajectories in working spaces, but also can be dynamically switched to contact force control with high flexibility. The dynamic model of the 6 DOF assembly industrial robot was established in joint space and was transformed into the working space of the end effector. The overall over control framework of the proposed control strategy consisted of reference tracking module, inner tracking control module, dynamic parameter identification module. The reference tracking module was designed based on sliding mode control while the trajectory of contact force was given by using an impedance filter. The switching condition between space tracking and contact force control was designed using sigmoid function. The dynamic parameter identification module was designed by using least square algorithm. All the control modules were verified through Lyapunov function to converge to stable region over wide working ranges. The proposed control was validated through simulations based on an industrial robot platform. Comparative results demonstrate that the proposed dynamic complaint control can significantly improve reference tracking accuracy and contact force control flexibility over wide working range as compared to typical proportional derivative (PD) control. The average relative tracking error of the complaint control can be well maintained within -4% and +4%.



Received: 28 February 2017      Published: 15 December 2017
CLC:  TP242  
Cite this article:

PAN Li, BAO Guan-jun, XU Fang, ZHANG Li-bin. Dynamic compliant control of six DOF assembly robot. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 125-132.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.01.017     OR     http://www.zjujournals.com/eng/Y2018/V52/I1/125


六自由度装配机器人的动态柔顺性控制

为了提升工业机器人装配的精确性与柔顺性,提出适合工业六自由度装配机器人的动态柔顺性控制策略,使之不仅能够实现快速高精度的参考轨迹跟踪,而且能够动态地切换到工件装配时的接触力控制,并能够保持良好的柔顺性接触力.构建机器人关节空间的标准动力学模型,并变换到末端执行器操作空间,获得操作空间的动态特性.给出该控制策略,主要包含参考轨迹给定模块、内环的轨迹跟踪控制器以及动力学参数辨识模块等.采用滑模算法设计轨迹跟踪控制器;采用阻抗滤波器,生成装配作业时末端执行器的期望运动轨迹;采用sigmoid函数设计轨迹跟踪与接触力控制的判别模块;采用最小二乘算法,设计动力学参数辨识模块.采用Lyapunov函数证明了该控制策略的大范围渐进稳定性和收敛性.基于装配实验台上进行现场装配和动态轨迹跟踪的对比性仿真实验研究.仿真实验结果表明:与典型的比例微分(PD)控制相比,动态柔顺性控制能够在较宽广的范围内实现更精确的空间轨迹跟踪和接触力柔性控制,平均相对误差可以有效地控制在-4%到+4%之内.

[1] 吕立新, 李庆, 李路, 等. 基于PD运动控制算法的装配机器人设计[J]. 重庆科技学院学报:自然科学版, 2014, 3(4):97-101. LV Li-xin, LI Qing, LI Lu, et al. Assembly robot based on PD control algorithm design[J]. Journal of Chongqing Institute of Technology:Natural Science Edition, 2014, 3(4):97-101.
[2] 高亚军. 六自由度机器人平滑轨迹规划与控仿一体化系统研究[D]. 杭州:浙江工业大学, 2014. GAO Ya-jun. Six degrees of freedom robot smooth trajectory planning and control integration system research[D]. Hangzhou:Zhejiang University of Technology, 2014.
[3] 王学林, 肖永飞, 毕淑慧, 等. 机器人柔性抓取试验平台的设计与抓持力跟踪阻抗控制[J]. 农业工程学报, 2015, 1(8):58-63. WANG Xue-lin, XIAO Yong-fei, BI Shu-hui, et al. New robot flexible scraping test platform design and grasping force tracking impedance control[J]. Journal of Agricultural Engineering, 2015, 1(8):58-63.
[4] 陈兆芃, 金明河, 樊绍巍, 等. 面向任务的机器人灵巧手控制系统及多指空间协调阻抗控制[J]. 哈尔滨工程大学学报, 2012, 4(4):476-484. CHEN Zhao-peng, JIN Ming-he, FAN Shao-wei, et al. Control system and multiple task oriented dexterous robot hand refers to the space coordinate impedance control[J]. Journal of Harbin Engineering University, 2012, 4(4):476-484.
[5] 樊绍巍, 宗华, 邱景辉, 等. 机器人灵巧手柔性关节自适应阻抗控制[J]. 电机与控制学报, 2012, 12(8):78-86. FAN Shao-wei, ZONG Hua, QIU Jing-hui, et al. Dexterous robot hand flexible joint adaptive impedance control[J]. Journal of Motor and Control, 2012, 12(8):78-86.
[6] SICILIANO B, SCIAVICCO L, VILLANI L, et al. Robotics:modeling, planning and control[M]. New York:Springer, 2015.
[7] CRAIG J J. Introduction to robotics:mechanics and control[M]. New York:Pearson Education, 2015.
[8] ASTROM K J, WITTENMARK B. Adaptive control. reading[M]. MA:Wesley, 2014:34-43.
[9] 段魁臣. 稳定性基本理论与Lyapunov函数构造[M]. 乌鲁木齐:新疆大学出版社,2015:16-28.
[10] SLOTINE J J E, LI W. Applied nonlinear control[M]. Englewood Cliffs:Prentice-Hall, 2008:18-28.
[11] LEE H, KIM E, KANG H J, et al. A new sliding-mode control with fuzzy boundary layer[J]. Fuzzy Sets System, 2012, 120(6):135-143.
[12] DAVLIAKOS I, PAPADOPOULOS E. Impedance model-based control for an electrohydraulic Stewart platform[J]. European Journal of Control, 2009, 5(5):560-577.
[13] Mitsubishi electric corporation[R/OL]. 2012-06-28. http://www.mitsubishielectric.com/fa/cn_zh/products/rbt/robot/.
[14] VIJAY M, JENA D. PSO based neuro fuzzy sliding mode control for a robot manipulator[J]. Journal of Electrical Systems and Information Technology, 2017, 4(1):243-256.

[1] WANG Chen-xue, PING Xue-liang, XU Chao. Closed loop calibration of industrial robot for solving constraint plane wandering[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2110-2119.
[2] ZHAO Xiao-dong, LIU Zuo-jun, CHEN Ling-ling, YANG Peng. Approach of running gait recognition for lower limb amputees[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1980-1988.
[3] WANG Shuo-peng, YANG Peng, SUN Hao. Construction process optimization of fingerprint database for auditory localization[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1973-1979.
[4] FU Xiao-yun, LEI Lei, YANG Gang, LI Bao-ren. Wing parameter configuration and steady motion analysis of water-jet hybrid glider[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1499-1508.
[5] LI Zhong-wen, WANG Bin-rui, CHEN Di-jian. Gait planning for quadruped robot with parallel spine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1267-1274.
[6] KE Xian-xin, ZHANG Wen-zhen, YANG Yang, WEN Lei. Multi-sensor positioning system for humanoid robot[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1247-1252.
[7] LI Ci-ci, TIAN Guo-hui, ZHANG Meng-yang, ZHANG Ying. Ontology-based humanoid cognition and reasoning of object attributes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1231-1238.
[8] CHEN Di-jian, XU Yi-zhan, WANG Bin-rui. On-line optimal gait generation for biped walking robot by using double generating functions method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1253-1259.
[9] WU Bing-long, QU Dao-kui, XU Fang. Industrial robot high precision peg-in-hole assembly based on hybrid force/position control[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 379-386.
[10] GU Yu, LI Beng, HAN Bei. Landmark detection and tracking based on layered particle filter[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 687-691.
[11] JIANG Rong-Xin, ZHANG Liang, TIAN Xiang, CHEN Yao-Wu. Optimal efficiency of multi-robot formation transform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 722-727.
[12] LIU Chu-Hui, TAO Bao-Guo, KE Yang-Lin. Study on offline programming of industrial robot for cutting process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(3): 426-431.
[13] LI Jiang, WANG Xuan-Yin, CHENG Jia. Adaptive slidingmode trajectorytracking control of hydraulic Stewart platform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1124-1128.
[14] XI Hai-Yan, MAO Tong-Sheng, LI Dun-Kai, et al. Measurement and evaluation of for flat panel displays color motion artifacts[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1158-1162.
[15] CHENG Bang-Qing, TANG Xiao-Wei. Study of Harris scale invariant keypoint detector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(5): 855-859.