Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (10): 1973-1979    DOI: 10.3785/j.issn.1008-973X.2018.10.017
    
Construction process optimization of fingerprint database for auditory localization
WANG Shuo-peng1, YANG Peng1,2, SUN Hao1,2
1. School of Artificial Intelligence, Hebei University of Technology, Tianjin 300130, China;
2. Smart Recovery Device and Testing Technology Engineering Research Center of Ministry of Education, Tianjin 300130, China
Download:   PDF(857KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel database construction method was proposed according to the location error distribution feature in order to solve the problems of unacceptable amounts of reference points needed and positioning performance deterioration in some local areas during the position fingerprint database construction by grid map method. The area with low location precise was searched by k-nearest neighbor algorithm according to the location error of test points for new reference point layout in the process of database construction. The simulation and actual experiments were conducted for database construction effects comparation between the proposed method and the traditional grid map method. Results show that the novel method can effectively improve the building efficiency of position fingerprint database, inhibit deterioration of local positioning performance and significantly enhance the applicability of the auditory localization system.



Received: 11 September 2017      Published: 11 October 2018
CLC:  TP242  
  TP391  
Cite this article:

WANG Shuo-peng, YANG Peng, SUN Hao. Construction process optimization of fingerprint database for auditory localization. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1973-1979.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.10.017     OR     http://www.zjujournals.com/eng/Y2018/V52/I10/1973


听觉定位数据库构建过程优化

针对采用栅格地图法进行听觉定位数据库构建过程中存在的所需参考点数量较多和局部定位效果恶化等问题,提出基于定位误差分布特征的位置指纹数据库构建方法.在数据库构建过程中,根据测试点的定位误差分布情况,采用k近邻算法搜索定位精度偏低的区域进行新定位参考点布置.从仿真和实际实验两方面对所提出的方法与传统栅格地图方法的数据库构建效果进行了对比.结果表明,采用该方法可以有效地提升位置指纹库构建的效率,抑制局部定位效果恶化现象,提高听觉定位系统的适用性.

[1] 李晓飞, 刘宏. 机器人听觉声源定位研究综述[J]. 智能系统学报, 2012, 7(1):9-20 LI Xiao-fei, LIU Hong. A survey of sound source localization for robot audition[J]. CAAI Transactions on Intelligent Systems, 2012, 7(1):9-20
[2] YU Q, YUAN C, FU Z, et al. Research of the localization of restaurant service robot[J]. International Journal of Advanced Robotic Systems, 2010, 7(3):227-238.
[3] LIU H, SHEN M. Continuous sound source localization based on microphone array for mobile robots[C]//IROS'10. Taipei:IEEE/RSJ, 2010:4332-4339.
[4] 孙昊. 基于声达时间差的移动机器人声源目标定位方法研究[D]. 天津:河北工业大学, 2012:17-21. SUN Hao. Study on sound source localization for mobile robot based on time delay of arrival[D]. Tianjin:Hebei University of Technology, 2012:17-21.
[5] PAHLAVAN K, AKGUL F O, HEIDARI M, et al. Indoor geolocation in the absence of direct path[J]. IEEE Wireless Communications, 2006, 13(6):50-58.
[6] YIN J, YANG Q, NI L M. Learning adaptive temporal radio maps for signal-strength-based location estimation[J]. IEEE Transactions on Mobile Computing, 2008, 7(7):869-883.
[7] 王硕朋, 杨鹏, 孙昊. 基于声音位置指纹的室内声源定位方法[J]. 北京工业大学学报, 2017, 43(2):224-229 WANG Shuo-peng, YANG Peng, SUN Hao. Indoor sound-position fingerprint method based on scenario analysis[J]. Journal of Beijing University of Technology, 2017, 43(2):224-229
[8] VIEL B, ASPLUND M. Why is fingerprint-based indoor localization still so hard?[C]//PerCom'14. Budapest:IEEE, 2014:443-448.
[9] 王舒文. 分布式麦克风阵列定位方法研究[D]. 大连:大连理工大学, 2013:28-29. WANG Shu-wen. Study on distributed microphone array location method[D]. Dalian:Dalian University of Technology, 2013:28-29.
[10] 周艳, 赵海, 曹伟, 等. 三维空间定位参考点的分布问题研究[J]. 东北大学学报:自然科学版, 2008, 29(12):1689-1692 ZHOU Yan, ZHAO Hai, CAO Wei, et al. On the 3D distribution of locating reference nodes[J]. Journal of Northeastern University:Natural Science Edition, 2008, 29(12):1689-1692
[11] HE S, JI B, CHAN S H G. Chameleon:survey-free updating of a fingerprint database for indoor localization[J]. IEEE Pervasive Computing, 2016, 15(4):66-75.
[12] HE S, CHAN S H. Tilejunction:mitigating signal noise for fingerprint-based indoor localization[J]. IEEE Transactions on Mobile Computing, 2015, 15(6):1554-1568.
[13] DAWES B, CHIN K W. A comparison of deterministic and probabilistic methods for indoor localization[J]. Journal of Systems and Software, 2011, 84(3):442-451.
[14] HUANG C N, CHAN C T. ZigBee-based indoor location system by k-nearest neighbor algorithm with weighted RSSI[J]. Procedia Computer Science, 2011, 5(3):58-65.
[15] 杨慧琳, 黄智刚, 刘久文, 等. 基于核模糊C均值指纹库管理的WIFI室内定位方法[J]. 浙江大学学报:工学版, 2016, 50(6):1126-1133 YANG Hui-lin, HUANG Zhi-gang, LIU Jiu-wen, et al. WIFI fingerprinting localization based on kernel fuzzy C-means Ⅱ clustering[J]. Journal of Zhejiang University:Engineering Science, 2016, 50(6):1126-1133
[16] CHEN L, LI B, ZHAO K, et al. An improved algorithm to generate a Wi-Fi fingerprint database for indoor positioning[J]. Sensors, 2013, 13(8):11085-11096.
[17] 陈祠, 牟楠, 张晨, 等. 基于主成分分析的室内指纹定位模型[J]. 软件学报, 2013, 24(1):98-107 CHEN Ci, MOU Nan, ZHANG Chen, et al. Indoor fingerprint positioning model based on principal component analysis[J]. Journal of Software, 2013, 24(1):98-107

[1] WANG Chen-xue, PING Xue-liang, XU Chao. Closed loop calibration of industrial robot for solving constraint plane wandering[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2110-2119.
[2] ZHAO Xiao-dong, LIU Zuo-jun, CHEN Ling-ling, YANG Peng. Approach of running gait recognition for lower limb amputees[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1980-1988.
[3] FU Xiao-yun, LEI Lei, YANG Gang, LI Bao-ren. Wing parameter configuration and steady motion analysis of water-jet hybrid glider[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1499-1508.
[4] LI Zhong-wen, WANG Bin-rui, CHEN Di-jian. Gait planning for quadruped robot with parallel spine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1267-1274.
[5] KE Xian-xin, ZHANG Wen-zhen, YANG Yang, WEN Lei. Multi-sensor positioning system for humanoid robot[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1247-1252.
[6] LI Ci-ci, TIAN Guo-hui, ZHANG Meng-yang, ZHANG Ying. Ontology-based humanoid cognition and reasoning of object attributes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1231-1238.
[7] CHEN Di-jian, XU Yi-zhan, WANG Bin-rui. On-line optimal gait generation for biped walking robot by using double generating functions method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1253-1259.
[8] WU Bing-long, QU Dao-kui, XU Fang. Industrial robot high precision peg-in-hole assembly based on hybrid force/position control[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 379-386.
[9] PAN Li, BAO Guan-jun, XU Fang, ZHANG Li-bin. Dynamic compliant control of six DOF assembly robot[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 125-132.
[10] GU Yu, LI Beng, HAN Bei. Landmark detection and tracking based on layered particle filter[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 687-691.
[11] JIANG Rong-Xin, ZHANG Liang, TIAN Xiang, CHEN Yao-Wu. Optimal efficiency of multi-robot formation transform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 722-727.
[12] LIU Chu-Hui, TAO Bao-Guo, KE Yang-Lin. Study on offline programming of industrial robot for cutting process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(3): 426-431.
[13] LI Jiang, WANG Xuan-Yin, CHENG Jia. Adaptive slidingmode trajectorytracking control of hydraulic Stewart platform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1124-1128.
[14] XI Hai-Yan, MAO Tong-Sheng, LI Dun-Kai, et al. Measurement and evaluation of for flat panel displays color motion artifacts[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1158-1162.
[15] CHENG Bang-Qing, TANG Xiao-Wei. Study of Harris scale invariant keypoint detector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(5): 855-859.