Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (7): 1267-1274    DOI: 10.3785/j.issn.1008-973X.2018.07.006
Robot Modeling and Contro     
Gait planning for quadruped robot with parallel spine
LI Zhong-wen, WANG Bin-rui, CHEN Di-jian
College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China
Download:   PDF(2988KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A 3-RPS parallel structure was added as the spine based on the quadruped robot with rigid body in order to increase the range of motion and absorb ground impact for legged robots. The kinematics model of robot with spine was established to relate between the rotation of spine and centroid. Twisting trot gait was planned by the yaw joint of spine based on trot gait. The coupled central pattern generator (CPG)was constructed by five Hopf oscillator models in order to output gait curves of limbs and spine. Analysis of longitudinal stable operating conditions of quadruped robot using zero moment point was conducted. The simulation and experimental results show that active spine can reduce pitch fluctuation of the robot by45.79%, correct the yaw position and improve the stability and coordination during movement compared with rigid torso robot. The periodic rotation of the spine does not lead to a mutation of the centroid. Robot with active spine has a better performance for the stabilizing and motion by the coordination between rotating spine and swinging limbs.



Received: 02 January 2018      Published: 26 June 2018
CLC:  TP242  
Cite this article:

LI Zhong-wen, WANG Bin-rui, CHEN Di-jian. Gait planning for quadruped robot with parallel spine. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1267-1274.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.07.006     OR     http://www.zjujournals.com/eng/Y2018/V52/I7/1267


有并联脊柱的四足机器人步态规划

为了增加足式机器人的腿部运动范围和吸收地面冲击力,在刚性躯体四足机器人的基础上,设计3-RPS并联机构作为机器人的脊柱.建立有脊柱四足机器人的运动学模型,得到脊柱关节的周期性与质心位置的关系.在对角步态的基础上,利用脊柱偏航方向的自由度,规划了脊柱扭转对角步态.采用Hopf振荡器,建立耦合中枢模式发生器(CPG)网络输出步态曲线.通过与刚性躯干四足机器人的对比仿真和实验可知,主动脊柱的加入使机器人运行过程中的俯仰波动降低45.79%,矫正了偏航位置. 脊柱关节的周期性转动不会引起质心位置的突变.脊柱波动与肢体摆动间的协调,使得有脊柱四足机器人具有更优的运动性能.

[1] KAR D C, KURIEN ISSAC K, JAYARAJAN K. Minimum energy force distribution for a walking robot[J]. Journal of Field Robotics, 2015, 18(2):47-54.
[2] 孟健,李贻斌,李彬.四足机器人对角小跑步态全方位移动控制方法及其实现[J].机器人,2015, 37(1):74-84. MENG Jian, LI Yi-bin, LI Bin. Control method and its implementation of quadruped robot in omni-directional trotting gait[J]. Robot, 2015, 37(1):74-84.
[3] WANG C, ZHANG T, WEI X. Dynamic characteristics and stability criterion of rotary galloping gait with an articulated passive spine joint[J]. Advanced Robotics, 2016, 31(4):1-16.
[4] KAWASAKI R, SATO R. Development of a flexible coupled spine mechanism for a small quadruped robot[C]//IEEE International Conference on Robotics and Biomimetics. Bali:IEEE, 2017:71-76.
[5] MIKI K, TSUJITA K. A study of the effect of structural damping on gait stability in quadrupedal locomotion using a musculoskeletal robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Tivoli:IEEE, 2012:1976-1981.
[6] AOI S, KATAYAMA D, FUJIKI S. Cusp catastrophe embedded in gait transition of a quadruped robot driven by nonlinear oscillators with phase resetting[C]//IEEE International Conference on Robotics and Biomimetics. Guangzhou:IEEE, 2012:384-389.
[7] DONG J H, SANG O S, LEE J, et al. High speed trot-running:Implementation of a hierarchical controllerusing proprioceptive impedance control on the MIT Cheetah[J]. International Journal of Robotics Research, 2015, 33(11):1417-1445.
[8] SEOK S, WANG A, MENG Y C. Design principles for energy-efficient legged locomotion and implementation on the MIT cheetah robot[J]. IEEE/ASME Transactions on Mechatronics, 2014, 20(3):1-13.
[9] POUYA S, KHODABAKHSH M, SPRÖWITZ A, et al. Spinal joint compliance and actuation in a simulated bounding quadruped robot[J]. Autonomous Robots, 2017, 41(2):437-452.
[10] KUEHN D, BEINERSDORF, BERNHARD F. Active spine and feet with increased sensing capabilities for walking robots[C]//International Symposium on Artificial Intelligence. Germany:[s.n.], 2012:1204-1210.
[11] 甄伟鲲,康熙,张新生.一种新型四足变胞爬行机器人的步态规划研究[J].机械工程学报,2016,52(11):26-33. ZHEN Wei-kun, KANG Xi, ZHANG Xin-sheng. Gait planning of a novel metamorphic quadruped robot[J]. Journal of Mechanical Engineering, 2016, 52(11):26-33.
[12] HU Y, LIANG J, WANG T. Parameter synthesis of coupled nonlinear oscillators for CPG-based roboticlocomotion[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11):6183-6191.
[13] SPRÖWITZ A, TULEU A, VESPIGNANI M. Towards dynamic trot gait locomotion:design, control, and experiments with Cheetah-cub, a compliant quadruped robot[J]. International Journal of Robotics Research, 2013, 32(8):932-950.
[14] FUKUOKA Y, HABU Y, FUKUI T. Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation[J]. Biological Cybernetics, 2013, 107(6):695-710.
[15] 王斌锐,王涛,郭振武.气动肌肉四足机器人建模与滑模控制[J].机器人,2017,39(5):620-626. WANG Bin-rui, WANG Tao, GUO Zhen-wu. Modeling and sliding mode control of quadruped robot driven by pneumatic muscles[J]. Robot, 2017, 39(5):620-626.
[16] HU Y, LIANG J, WANG T. Parameter synthesis of coupled nonlinear oscillators for CPG-based robotic locomotion[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11):6183-6191.
[17] NYAKATURA J A, FISCHER M S. Functional morphology and three-dimensional kinematics of the thoraco-lumbar region of the spine of the two-toed sloth[J]. Journal of Experimental Biology, 2010, 213(24):4278-4290.
[18] IJSPEERT A J, CABELGUEN J M. Control of aquatic and terrestrial gaits in salamander[M]. New York:Springer, 2015:1-9.
[19] SANTOS C P, ALVES N, MORENO J C. Biped locomotion control through a biomimetic CPG-based controller[J]. Journal of Intelligent and Robotic Systems, 2016, 85(1):1-24.

[1] WANG Chen-xue, PING Xue-liang, XU Chao. Closed loop calibration of industrial robot for solving constraint plane wandering[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2110-2119.
[2] ZHAO Xiao-dong, LIU Zuo-jun, CHEN Ling-ling, YANG Peng. Approach of running gait recognition for lower limb amputees[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1980-1988.
[3] WANG Shuo-peng, YANG Peng, SUN Hao. Construction process optimization of fingerprint database for auditory localization[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1973-1979.
[4] FU Xiao-yun, LEI Lei, YANG Gang, LI Bao-ren. Wing parameter configuration and steady motion analysis of water-jet hybrid glider[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1499-1508.
[5] KE Xian-xin, ZHANG Wen-zhen, YANG Yang, WEN Lei. Multi-sensor positioning system for humanoid robot[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1247-1252.
[6] LI Ci-ci, TIAN Guo-hui, ZHANG Meng-yang, ZHANG Ying. Ontology-based humanoid cognition and reasoning of object attributes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1231-1238.
[7] CHEN Di-jian, XU Yi-zhan, WANG Bin-rui. On-line optimal gait generation for biped walking robot by using double generating functions method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1253-1259.
[8] WU Bing-long, QU Dao-kui, XU Fang. Industrial robot high precision peg-in-hole assembly based on hybrid force/position control[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 379-386.
[9] PAN Li, BAO Guan-jun, XU Fang, ZHANG Li-bin. Dynamic compliant control of six DOF assembly robot[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 125-132.
[10] GU Yu, LI Beng, HAN Bei. Landmark detection and tracking based on layered particle filter[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 687-691.
[11] JIANG Rong-Xin, ZHANG Liang, TIAN Xiang, CHEN Yao-Wu. Optimal efficiency of multi-robot formation transform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 722-727.
[12] LIU Chu-Hui, TAO Bao-Guo, KE Yang-Lin. Study on offline programming of industrial robot for cutting process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(3): 426-431.
[13] LI Jiang, WANG Xuan-Yin, CHENG Jia. Adaptive slidingmode trajectorytracking control of hydraulic Stewart platform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1124-1128.
[14] XI Hai-Yan, MAO Tong-Sheng, LI Dun-Kai, et al. Measurement and evaluation of for flat panel displays color motion artifacts[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1158-1162.
[15] CHENG Bang-Qing, TANG Xiao-Wei. Study of Harris scale invariant keypoint detector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(5): 855-859.