Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (2): 379-386    DOI: 10.3785/j.issn.1008-973X.2018.02.021
Computer Technology     
Industrial robot high precision peg-in-hole assembly based on hybrid force/position control
WU Bing-long1,2, QU Dao-kui1, XU Fang1
1. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Download:   PDF(5822KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A peg-in-hole assembly strategy and a new implementation of hybrid force/position control strategy were proposed, in order to analyze the application of industrial robot in high precision assembly field and solve the typical peg-in-hole problem in high precision assembly. The assembly process included three stages:search, insert and complete. The proposed hybrid force/position control system was based on the motors velocity control loop, and had a larger system bandwidth compared to the traditional force control system based on position control loop. The control structure was simple and easy to implement, and could integrate the velocity signal, and transform into implementation based on the motors position control loop. The simulation and experiment were conducted to verify the effectiveness of the method. The simulation results show that the force/position hybrid control method based on the velocity control loop has better performance to track higher frequency sinusoidal signal than traditional method which is based on the position control loop. The industrial robot was used to assembly the reducer of robot arm. Experimental results show that the force/position hybrid control method with spiral search hole strategy can find the assembly hole and finish the peg-in-hole assembly task well.



Received: 04 December 2016      Published: 09 March 2018
CLC:  TP242  
Cite this article:

WU Bing-long, QU Dao-kui, XU Fang. Industrial robot high precision peg-in-hole assembly based on hybrid force/position control. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 379-386.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.02.021     OR     http://www.zjujournals.com/eng/Y2018/V52/I2/379


基于力/位混合控制的工业机器人精密轴孔装配

为了研究工业机器人在高精密装配领域的应用,针对高精密装配中典型的轴孔装配问题,提出精密轴孔装配流程以及新的力/位混合控制策略实现方式:装配流程包括搜孔、插入、完成3个阶段;新的力/位混合控制策略是基于伺服速度环实现,与传统基于伺服位置环实现的力控制系统相比较具有更大的系统带宽,控制系统结构简单,方便实现,也可以把速度信号进行积分,转化为伺服位置环控制的实现方式,开展仿真和实验以验证方法的有效性,仿真结果表明,基于速度环实现的力控制能够更好地跟踪更高频率的正弦给定信号,具有较好的力跟踪性能.实验采用工业机器人大臂减速机的装配,实验结果表明,采用力/位混合控制方法和螺旋搜孔的方式能够顺利地找到装配孔,很好地完成轴孔装配作业.

[1] LANE J D. Evaluation of a remote center compliance device[J]. Assembly Automation, 1980, 1(1):36-46.
[2] VAN DAMME M, BEYL P, VANDERBORGHT B, et al. Estimating robot end-effector force from noisy actuator torque measurements[C]//2011 IEEE International Conference on Robotics and Automation (ICRA). Shanghai, China:IEEE, 2011:1108-1113.
[3] COLOMÉ A, PARDO D, ALENYA G, et al. External force estimation during compliant robot manipulation[C]//2013 IEEE International Conference on Robotics and Automation (ICRA). Karlsruhe, Germany:IEEE, 2013:3535-3540.
[4] WAHRBURG A, ZEISS S, MATTHIAS B, et al. Contact force estimation for robotic assembly using motor torques[C]//2014 IEEE International Conference on Automation Science and Engineering (CASE). Taipei China:IEEE, 2014:1252-1257.
[5] STOLT A, LINDEROTH M, ROBERTSSON A, et al. Force controlled robotic assembly without a force sensor[C]//2012 IEEE International Conference on Robotics and Automation (ICRA). Saint Paul. MN, USA:IEEE, 2012:1538-1543.
[6] CHEN H, WANG J, ZHANG G, et al. Robotic soft servo for industrial high precision assembly[C]//2008 IEEE Conference on Robotics, Automation and Mechatronics. Chengdu, China:IEEE, 2008:24-29.
[7] HOGAN N. Impedance control:An approach to manipulation:Part Ⅱ-Implementation[J]. Journal of dynamic systems, measurement, and control, 1985, 107(1):8-16.
[8] ALBU-SCHÄFFER A, OTT C, HIRZINGER G. A unified passivity-based control framework for position, torque and impedance control of flexible joint robots[J]. The International Journal of Robotics Research, 2007, 26(1):23-39.
[9] 张庭,姜力,刘宏. 仿生假手抓握力控制策略[J]. 机器人,2012,34(2):190-196. ZHANG Ting, JIANG Li, LIU Hong. A grasping force control strategy for anthropomorphic prosthetic hand.[J] Robot, 2012,34(2):190-196.
[10] MILLS J K, GOLDENBERG A A. Force and position control of manipulators during constrained motion tasks[J]. IEEE Transactions on Robotics and Automation, 1989, 5(1):30-46.
[11] LI E, LI W. Hybrid force/position control for positional-controlled robotic manipulators in unknown environment[J]. Journal of China Coal Society, 2007, 6:023.
[12] 张庆伟,韩利利,徐方,等.基于打磨机器人的力/位混合控制策略研究[J].化工自动化及仪表,2012,39(7):884-886 ZHANG Qing-wei, HAN Li-li, XU Fang.et al. Hybrid force/position control study based on grinding robot[J]. Control and Instruments in Chemical Industry, 2012,39(7):884-886.

[1] WANG Chen-xue, PING Xue-liang, XU Chao. Closed loop calibration of industrial robot for solving constraint plane wandering[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2110-2119.
[2] ZHAO Xiao-dong, LIU Zuo-jun, CHEN Ling-ling, YANG Peng. Approach of running gait recognition for lower limb amputees[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1980-1988.
[3] WANG Shuo-peng, YANG Peng, SUN Hao. Construction process optimization of fingerprint database for auditory localization[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1973-1979.
[4] FU Xiao-yun, LEI Lei, YANG Gang, LI Bao-ren. Wing parameter configuration and steady motion analysis of water-jet hybrid glider[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1499-1508.
[5] LI Zhong-wen, WANG Bin-rui, CHEN Di-jian. Gait planning for quadruped robot with parallel spine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1267-1274.
[6] KE Xian-xin, ZHANG Wen-zhen, YANG Yang, WEN Lei. Multi-sensor positioning system for humanoid robot[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1247-1252.
[7] LI Ci-ci, TIAN Guo-hui, ZHANG Meng-yang, ZHANG Ying. Ontology-based humanoid cognition and reasoning of object attributes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1231-1238.
[8] CHEN Di-jian, XU Yi-zhan, WANG Bin-rui. On-line optimal gait generation for biped walking robot by using double generating functions method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1253-1259.
[9] PAN Li, BAO Guan-jun, XU Fang, ZHANG Li-bin. Dynamic compliant control of six DOF assembly robot[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 125-132.
[10] GU Yu, LI Beng, HAN Bei. Landmark detection and tracking based on layered particle filter[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 687-691.
[11] JIANG Rong-Xin, ZHANG Liang, TIAN Xiang, CHEN Yao-Wu. Optimal efficiency of multi-robot formation transform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 722-727.
[12] LIU Chu-Hui, TAO Bao-Guo, KE Yang-Lin. Study on offline programming of industrial robot for cutting process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(3): 426-431.
[13] LI Jiang, WANG Xuan-Yin, CHENG Jia. Adaptive slidingmode trajectorytracking control of hydraulic Stewart platform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1124-1128.
[14] XI Hai-Yan, MAO Tong-Sheng, LI Dun-Kai, et al. Measurement and evaluation of for flat panel displays color motion artifacts[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1158-1162.
[15] CHENG Bang-Qing, TANG Xiao-Wei. Study of Harris scale invariant keypoint detector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(5): 855-859.