Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Automation technology     
Application of active disturbance rejection control in trajectory tracking of powered parafoil system
TAN Pan-long, SUN Qing-lin, CHEN Zeng-qiang
College of Computer and Control Engineering, Nankai University, Tianjin 300350, China
Download:   PDF(1098KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  The trajectory tracking controllers based on active disturbance rejection control (ADRC) were proposed in order to reduce the influence of nonlinear characteristics of powered parafoil system and wind disturbance on the trajectory tracking control, involving the horizontal trajectory control channel and the vertical altitude control channel. The linear extended state observers (LESO) of the control channels were separately constructed to estimate and compensate the nonlinear and external disturbances. The zero-order hold discretization method was implemented to discretize LESO so that the estimation ability of LESO for system states was enhanced. Simulation results show that ADRC controllers achieve better tracking performance and robustness against the internal and external wind disturbance compared with the generalized predictive controller.

Published: 01 May 2017
CLC:  TP 23  
Cite this article:

TAN Pan-long, SUN Qing-lin, CHEN Zeng-qiang. Application of active disturbance rejection control in trajectory tracking of powered parafoil system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 992-999.


自抗扰技术在动力翼伞轨迹跟踪控制中的应用

为了降低动力翼伞系统的非线性特性和风场干扰对轨迹跟踪控制的影响,设计基于自抗扰控制技术的轨迹跟踪控制器.根据动力翼伞系统的特性,将动力翼伞系统的轨迹跟踪控制分为水平轨迹控制通道和垂直高度控制通道,分别设计线性扩张状态观测器(LESO)对系统非线性扰动和外部干扰进行估计和补偿.采用零阶保持器法对线性扩张状态观测器进行离散化,提高线性扩张状态观测器对系统状态的估计效果.仿真结果表明,动力翼伞系统的线性自抗扰轨迹跟踪控制器能够克服风场的影响,达到水平方向和竖直方向的轨迹跟踪控制要求,控制效果优于广义预测控制器.

参考文献(References):
[1] 韩雅慧,杨春信,肖华军,等.翼伞精确空投系统关键技术和发展趋势[J].兵工自动化,2012, 34(7): 1-7.
HAN Ya-hui, YANG Chun-xin, XIAO Hua-jun, et al. Review on key technology and development of parafoil precise airdrop systems [J]. Ordnance Industry Automation, 2012, 31(7): 1-7.
[2] 赵秋艳.翼伞雀降技术[J].航天返回与遥感,1999,20(2): 5-9.
ZHAO Qiu-yan. Flare maneuver of ram-air parachute \[J\]. Spacecraft Recovery & Remote Sensing, 1999, 20(2):5-9.
[3] 张兴会,朱二琳.翼伞系统雀降性能及控制研究[J].航天控制.2012,30(1): 29-33.
ZHANG Xing-hui, ZHU Er-lin. The study of the flare-landing performance and control of parafoil system [J]. Aerospace Control, 2012, 30(1): 29-33.
[4] ZHU E L, SUN Q L, TAN P L, et al. Modeling of powered parafoil based on Kirchhoff motion equation  \[J\]. Nonlinear Dynamics, 2015, 79(1): 617-629.
[5] 熊菁.翼伞系统动力学与归航方案研究[D].长沙:国防科技大学,2005.
XIONG Jing. Research on the dynamics and homing project of parafoil system [D]. Changsha: National University of Defense Technology, 2005.
[6] 李永新,陈增强,孙青林.基于模糊控制与预测控制切换的翼伞系统航迹跟踪控制[J].智能系统学报,2012,7(6): 481-488.
LI Yong-xin, CHEN Zeng-qiang, SUN Qing-lin. Flight path tracking of a parafoil system based on the switching between fuzzy control and predictive control [J]. CAAI Transactions on Intelligent Systems, 2012, 7(6):481-488.
[7] BENJAMIN S C. Adaptive control of a 10K parafoil system [C]∥ 23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Daytona Beach, FL: [s. n.],2015,  1-27.
[8] SLEGERS N, COSTELLO M. Model predictive control of a parafoil and payload system [J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 816-821.
[9] 熊菁,秦小波,程文科.降落伞系统附加质量的研究[J],中国空间科学技术,2002,22(4): 32-39.
XIONG Jing, QIN Xiao-bo, CHENG Wen-ke. The added mass research in parachute system [J]. Chinese Space Science and Technology, 2002, 22(4): 32-39.
[10] 韩京清.自抗扰控制器及其应用[J].控制与决策,1998,13(1): 19-23.
HAN Jing-qing. Auto disturbance rejection control and it’s application [J]. Control and Decision, 1998, 13(1): 19-23.
[11] 盖江涛,黄庆,黄守道,等.基于模型补偿的永磁同步电机自抗扰控制[J].浙江大学学报:工学版,2014,48(4): 581-588.
GAI Jiang-tao, HUANG Qing, HUANG Shou-dao, et al. Active-disturbance rejection controller for permanent magnet synchronous motor based on model compensation [J]. Journal of Zhejiang University :Engineering Edition, 2014, 48(4):581-588.
[12] 李毅,陈增强,刘忠信.自抗扰技术在四旋翼飞行姿态控制中的应用[J].哈尔滨工业大学学报,2014,46(3): 115-119.
LI Yi, CHEN Zeng-qiang, LIU Zhong-xin. Attitude control of a quad-rotor robot based on ADRC [J]. Journal of Harbin Institute of Technology, 2014, 46(3): 115-119.
[13] 刘一莎,杨晟萱,王伟.四旋翼飞行器的自抗扰飞行控制方法[J].控制理论与应用,2015,32(10): 1-10.
LIU Yi-sha, YANG Sheng-xuan, WANG Wei. An active disturbance-rejection flight control method forquad-rotor unmanned aerial vehicles [J]. Control Theory and Application, 2015, 32(10): 1-10.
[14] FENG G, LIU Y F, HUANG L P. A new robust algorithm to improve the dynamic performance on the speed control of induction motor drive [J]. IEEE Transactions on Power Electronics, 2004, 19(6):1614-1627.
[15] HAN J Q. From PID to active disturbance rejection control [J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906.
[16] GAO Z Q. Scaling and bandwidth-parameterization based controller tuning [C]∥ Proceedings of the American Control Conference. Denver. Colorado: [s. n.] 2003: 4989-4996.
[17] ZHENG Q, DONG L L, LEE D H, et al. Active disturbance rejection control for MEMS gyroscopes  \[J\]. IEEE Transactions on Control Systems Technology, 2009, 17(6): 1432-1438.
[18] 焦亮.基于翼伞空投机器人系统的自主归航研究[D].南开大学,2011.
JIAO Liang. Research on autonomous homing based on parafoil and airdropped robot system [D]. Tianjin: Nankai University, 2011.
[19] 熊菁,秦子增,程文科.回收过程中高空风场的特点及描述[J].航天返回与遥感,2003,24(3): 9-14.
XIONG Jing, QIN Zi-zeng, CHENG Wen-ke. The characteristics and description of midhigh altitude wind in recovery [J]. Spacecraft Recovery and Remote Sensing, 2003, 24(3): 9-14.
[1] Jin WANG,Xiang-kun WANG,Jian-hui FU,Guo-dong LU,Chao-chao JIN,Yan-zhi CHEN. Static and dynamic characteristic analysis and structure optimization for crossbeam structure of heavy-duty truss robot[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2021, 55(1): 124-134.
[2] Wu-yi XIE,Xiao GAO,Si-yu HE,Xiao-hui XIAO. Synergetic decoupling control of transport speed and tension for automated composite tape placement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(3): 455-462.
[3] TAO Guo-liang, ZHOU Chao-chao, SHANG Ce. Pneumatic position servo embedded controller and control strategy[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 792-799.
[4] YU Jie, ZHU Chang-sheng. Self-sensing active magnetic bearing using Hilbert transform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(4): 732-739.
[5] ZHANG Shuai, FENG Dong-qin, CHU Jian. Probability-based clock synchronization for EPA Wireless protocol[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(9): 1552-1557.
[6] ZHANG Shuai, FENG Dong-qin, CHU Jian. Probability-based clock synchronization for EPA-wireless protocol[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(4): 0-00.
[7] TANG Ming, ZHU Chang-sheng. Research of self-sensing active magnetic bearings based on duty cycle compensation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(8): 1418-1423.
[8] TANG Ming, ZHU Chang-sheng. Influence from force perturbation to position demodulation in  self-sensing active magnetic bearing[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(4): 698-704.
[9] CAO Wei-Hua, LI Meng-Yang, CHEN Xin, TUN Min. Novel high-efficient charge controller in independent photovoltaic system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(7): 1260-1265.