Please wait a minute...
J4  2013, Vol. 47 Issue (8): 1418-1423    DOI: 10.3785/j.issn.1008-973X.2013.08.014
    
Research of self-sensing active magnetic bearings based on duty cycle compensation
TANG Ming, ZHU Chang-sheng
College of Electrical Engineering, Zhejiang University, Hangzhou Zhejiang 310027 China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To achieve the self-sensing operation of active magnetic bearings (AMBs), a strategy for estimating rotor’s displacements based on duty cycle compensation was proposed. Instead of hardware demodulation, the real-time duty cycle was obtained through the CAP port of TMS320F28335, so that, the hardware complexity was reduced to half. Experiments were carried out on the platform of 4 degree-of-freedom radial AMBs. Experimental results showed that, linearity of this rotor’s displacements estimator is quite good, the error is less than 5%, and the AMBs system performed well when the rotor rotation speed reached 1 500 r/min using the estimated rotor’s displacements for feedback. Force disturbance tests confirmed the stability and robustness of this self-sensing strategy.



Published: 01 August 2013
CLC:  TP 23  
Cite this article:

TANG Ming, ZHU Chang-sheng. Research of self-sensing active magnetic bearings based on duty cycle compensation. J4, 2013, 47(8): 1418-1423.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.08.014     OR     http://www.zjujournals.com/eng/Y2013/V47/I8/1418


基于占空比补偿的电磁轴承无传感器运行

为了实现电磁轴承系统的无传感器运行,提出一种基于占空比补偿的转子位移提取方法,利用TMS320F28335芯片的捕获接口实时获取占空比信号并进行数字滤波和信号调理,以此来替代电压信号的硬件解调过程,从而将转子位移提取的硬件复杂度减少了一半,并且在四自由度径向电磁轴承刚性转子系统平台上进行实验测试和反馈运行.实验结果表明,使用该方法提取的转子位移线性度很好,误差不高于5%,直接使用该方法提取出来的位移量进行反馈控制,实现电磁轴承系统在1 500 r/min时的无传感器运行,外力扰动测试证实了无传感器电磁轴承系统具有一定的稳定性和鲁棒性.

[1] BLEULER H. Survey of magnetic levitation and magnetic bearing types [J]. JSME International Journal, Series 3: Vibration, Control Engineering, Engineering for Industry, 1992, 35(3): 335-342.

[2] VISCHER D. Sensorlose und spannugsgesteuerte magnetlager [D]. Zurich Switzerland: Swiss Federal Institution Technology, 1988.

[3] MASLEN E H. Self-sensing for active magnetic bearings: overview and status [C]∥Proceedings of the 10th Internation Symposium on Magnetic Bearings. Martigny Switzerland:[s. n.], 2006: 10-15.

[4] VISCHER D, HANNES B. A new approach to sensorless and voltage controlled AMBs based on network theory concepts [C]∥Proceedings of the 2nd Internation Symposium on Magnetic Bearings. Tokyo Japan :[s. n.], 1990: 301-306.

[5] SIVADASAN K K. Analysis of self-sensing active magnetic bearings working on inductance measurement principle [J]. IEEE Transactions on Magnetics, 1996, 32(2): 329334.

[6] MASLEN E H, IWASAKI T, MAHMOODIAN R. Formal parameter estimation for self-sensing [C]∥Proceedings of the 10th International Symposium on Magnetic Bearings. Martigny Switzerland:[s. n.], 2006: 529-536.

[7] HANSON B, LEVESLEY M. Self-sensing applications for electromagnetic actuators [J]. Sensors and Actuators, A: Physical, 2004, 116(2): 345-351.

[8] HANSON B M, BROWN M D, FISHER J. Self sensing: Closed-loop estimation for a linear electromagnetic actuator [C]∥Proceedings of the American Control Conference. Arlington.VA, United states :[s. n.], 2001: 1650-1655.

[9] 王军.无传感器磁悬浮轴承的研究[D].南京: 南京航空航天大学, 2005.

WANG Jun. Research of self-sensing magnetic bearings [D]. Nanjing: Nanjing University of Aeronautics and Astronautics. 2005.

[10] GARCIA P, GUERRERO J M, EL SAYED I, et al. Carrier signal injection alternatives for sensorless control of active magnetic bearings [C]∥2010 1st Symposium on Sensorless Control for Electrical Drives. Pisa. Italy :[s. n.], 2010: 7885.

[11] 叶建民.自检测电磁轴承转子的位移检测研究[J].科技创业.2008(12): 196-197.

YE Jian-min. Research on rotor displacement of self-sensing active magnetic bearing [J]. Pioneering with Science and Technology, 2008: 196-197.

[12] MIZUNO T, HIRASAWA Y. Self-sensing magnetic suspension using an H-bridge type hysteresis amplifier operating in two quadrants [C]∥IECON Proceedings :Industrial Electronics Conference. Sevilla, Spain :[s. n.], 2002: 1818-1823.

[13] SCHAMMASS A, HERZOG R, BUHLER P, et al. New results for self-sensing active magnetic bearings using modulation approach [J]. IEEE Transactions on Control Systems Technology, 2005, 13(4): 509-516.

[14] NOH M D. Self-sensing magnetic bearings driven by a switching power amplifier [D]. Virginia USA: University of Virginia, 1997.

[15] MONTIE D T. Performance limitations and self-sensing magnetic bearings [D]. Virginia USA: University of Virginia, 2003.

[16] OKADA Y, MATSUDA K I, NAGAI B. Sensorless magnetic levitation control by measuring the PWM carrier frequency component [C]∥Proceedings of the 3rd International Symposium on Magnetic Bearings. Virginia USA:[s. n.], 1992: 183-196.

[1] ZHANG Shuai, FENG Dong-qin, CHU Jian. Probability-based clock synchronization for EPA-wireless protocol[J]. J4, 2014, 48(4): 0-00.
[2] TANG Ming, ZHU Chang-sheng. Influence from force perturbation to position demodulation in  self-sensing active magnetic bearing[J]. J4, 2013, 47(4): 698-704.
[3] CAO Wei-Hua, LI Meng-Yang, CHEN Xin, TUN Min. Novel high-efficient charge controller in independent photovoltaic system[J]. J4, 2010, 44(7): 1260-1265.