Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Probability-based clock synchronization for EPA Wireless protocol
ZHANG Shuai, FENG Dong-qin, CHU Jian
State Key Laboratory of Industrial Control Technology, Zhejiang University, Zhejiang Hangzhou, 310027
Download:   PDF(771KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Single packet broadcasting (SPB) method applied in EPA Wireless for synchronization needs a plenty of time and packets and a long macro cycle. A probability-based synchronization (PBS) method was proposed to solve the problem. PBS allocates fewer opportunities for synchronization, in which all nodes send synchronization packets with equal probability. In theory, PBS needs less time and packets to keep nodes in synchronization with the gateway, and it can reduce the macro cycle of EPA Wireless. Besides, PBS is more energy saving and can reduce network flow. The performance of PBS does not decrease dominantly with the increasing nodenumber. PBS has a larger deviation than SPB but it does not affect the performance of EPA Wireless. Experiments were conducted on a real wireless network. The results showed the agreement of the experimental and theoretical performances.



Published: 01 September 2014
CLC:  TP 23  
Cite this article:

ZHANG Shuai, FENG Dong-qin, CHU Jian. Probability-based clock synchronization for EPA Wireless protocol. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(9): 1552-1557.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.09.002     OR     http://www.zjujournals.com/eng/Y2014/V48/I9/1552


基于概率的EPA Wireless时钟同步方法

针对在EPA Wireless协议中采用单报文广播(SPB)的时钟同步方法存在同步时间长、发送报文数目多、协议的宏周期长等问题,提出基于概率的用于EPA Wireless同步(PBS)方法.PBS只须分配较少的同步机会,每个机会中所有节点都以相等的概率发送同步报文.理论上PBS需要很少的时间和报文来保持节点和网关之间的同步,可以减少EPA Wireless的宏周期;此外PBS方法更加节能,并且可以减少网络流量.PBS方法的性能不会随着节点数目增多而明显下降.使用PBS,从节点与网关时钟之间的时钟偏差比SPB大,但是该偏差不会影响到协议的功能.将该方法在组建的无线网络上进行实验,结果表明:基于概率的时钟同步方法在实际上和理论上的性能是一致的.

1] RAHAMATKAR S, AGARWAL A, KUMAR N. Analysis and comparative study of clock synchronization schemes in wireless sensor networks[J]. International Journal on Computer Science and Engineering, 2010, 2(3): 536-541.
[2] WU Y C, CHAUDHARI Q, SERPEDIN E. Clock synchronization of wireless sensor networks[J]. Signal Processing Magazine, IEEE, 2011, 28(1): 124-138.
[3] SICHITIU M L, VEERARITTIPHAN C. Simple, accurate time synchronization for wireless sensor networks[C] ∥Wireless Communications and Networking, [S. l.]: IEEE, 2003: 1266-1273.
[4] SOMMER P, WATTENHOFER R. Gradient clock synchronization in wireless sensor networks[C]∥Proceedings of the 2009 International Conference on Information Processing in Sensor Networks. [S. l.]: IEEE Computer Society, 2009: 37-48.
[5] CHEN Ji-ming, YU Qing, ZHANG Yan, et al. Feedback-based clock synchronization in wireless sensor networks: A control theoretic approach[J]. IEEE Transactions on Vehicular Technology, 2010, 59(6): 2963-2973.
[6] NOH K L, SERPEDIN E, QARAQE K. A new approach for time synchronization in wireless sensor networks: Pairwise broadcast synchronization[J]. IEEE Transactions on Wireless Communications, 2008, 7(9): 3318-3322.
[7] SHEU J P, CHAO C M, HU W K, et al. A clock synchronization algorithm for multihop wireless ad hoc networks[J]. Wireless Personal Communications, 2007, 43(2): 185-200.
[8] SUN K, NING P, WANG C. Fault-tolerant cluster-wise clock synchronization for wireless sensor networks[J]. IEEE Transactions on Dependable and Secure Computing, 2005, 2(3): 177-189.
[9] LEE S, LEE S, HONG C. An accuracy enhanced IEEE 1588 synchronization protocol for dynamically changing and asymmetric wireless links[J]. Communications Letters, 2012, 16(2): 190-192.
[10] LEE M K, OKEEFE S G, THIEL D V. Consensus clock synchronization for wireless sensor networks[J]. Sensors Journal, 2012, 12(6): 2269-2277.
[11] KUMAR S, LEE Y, LEE S R. Time synchronization in wireless sensor networks: estimating packet delay[C]∥ International Conference on Convergence and its Application. Las Vegas: [s. n.], 2013: 68-71.
[12] 张赫男. EPA Wireless工业实时网络系统的链路可靠性与通信调度研究[D]. 杭州: 浙江大学, 2010.
ZHANG He-nan. Research on link reliability and communication scheduling of industrial real-time network systems[D]. Hangzhou: Zhejiang University, 2010.

[1] TAN Pan-long, SUN Qing-lin, CHEN Zeng-qiang. Application of active disturbance rejection control in trajectory tracking of powered parafoil system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 992-999.
[2] TAO Guo-liang, ZHOU Chao-chao, SHANG Ce. Pneumatic position servo embedded controller and control strategy[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 792-799.
[3] YU Jie, ZHU Chang-sheng. Self-sensing active magnetic bearing using Hilbert transform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(4): 732-739.
[4] ZHANG Shuai, FENG Dong-qin, CHU Jian. Probability-based clock synchronization for EPA-wireless protocol[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(4): 0-00.
[5] TANG Ming, ZHU Chang-sheng. Research of self-sensing active magnetic bearings based on duty cycle compensation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(8): 1418-1423.
[6] TANG Ming, ZHU Chang-sheng. Influence from force perturbation to position demodulation in  self-sensing active magnetic bearing[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(4): 698-704.
[7] CAO Wei-Hua, LI Meng-Yang, CHEN Xin, TUN Min. Novel high-efficient charge controller in independent photovoltaic system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(7): 1260-1265.