Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (8): 1578-1586    DOI: 10.3785/j.issn.1008-973X.2020.08.017
    
Sliding mode proportional integral resonance control for single-phase five-level pulse rectifier
Yi-feng ZHU(),Dang-jian WU,Bing-yang BAI,Hao YUE
School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000, China
Download: HTML     PDF(1492KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel single-phase five-level pulse width modulation (PWM) rectifier based on coupled inductor was presented. A sliding mode proportional integral resonance (PIR) control algorithm was proposed to improve the dynamic response of the system, maintain unity power factor and reduce the current harmonic content of the grid side. The circuit topology and working principle of the new single-phase five-level PWM rectifier were analyzed. A mathematical model of the rectifier in the d-q axis synchronous rotating reference frame were constructed. The voltage outer loop sliding-mode and current inner loop PIR control algorithm were derived, and the specific design process was given. Compared with the traditional proportional integral (PI) current control algorithm in the d-q coordinate system, the proposed sliding mode PIR control algorithm has a faster dynamic response speed and a lower current harmonic content on the grid side. A simulation model based on MATLAB/Simulink and a hardware-in-the-loop real-time simulation experiment platform based on RT-lab were built. The sliding mode PIR and traditional PI current control algorithm in the d-q coordinate system were compared and verified in computer simulation and hardware-in-loop experimental test. Simulation and experimental results verify the correctness and feasibility of the proposed algorithm.



Key wordssingle phase      five-level      pulse width modulation (PWM) rectifier      sliding mode control      proportional-integral-resonance      coupled inductor     
Received: 10 July 2019      Published: 28 August 2020
CLC:  TM 46  
Cite this article:

Yi-feng ZHU,Dang-jian WU,Bing-yang BAI,Hao YUE. Sliding mode proportional integral resonance control for single-phase five-level pulse rectifier. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1578-1586.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.08.017     OR     http://www.zjujournals.com/eng/Y2020/V54/I8/1578


单相五电平脉冲整流器滑模比例积分谐振控制

以基于耦合电感的新型单相五电平脉冲宽度调制(PWM)整流器为研究对象,为了提升系统动态响应、维持单位功率因数、减少网侧电流谐波含量,提出滑模比例积分谐振(PIR)控制算法. 通过对新型单相五电平PWM整流器的电路拓扑和工作原理分析,构建整流器d-q同步旋转坐标系下的数学模型,推导整流器电压外环滑模和电流内环PIR控制算法,给出具体设计过程. 与d-q坐标系传统比例积分(PI)电流控制算法相比,所提滑模PIR控制算法动态响应速度更快,网侧电流谐波含量更低. 搭建基于MATLAB/Simulink的仿真模型和基于RT-lab的半实物实时仿真平台,对滑模PIR控制算法与d-q坐标系传统PI电流控制算法分别进行计算机仿真和半实物实验对比研究,仿真和实验结果验证了所提滑模PIR控制算法的正确性和可行性.


关键词: 单相,  五电平,  脉冲宽度调制(PWM)整流器,  滑模控制,  比例积分谐振,  耦合电感 
Fig.1 New single-phase five-level PWM rectifier topology
T1 T2 T3 uan ubn ucn udn ubd ucd ubc uad
1 0 0 udc 0 0 0 0 0 0 udc
1 0 1 udc 0 udc udc /2 ?udc /2 udc /2 ?udc udc /2
1 1 0 udc udc 0 udc /2 udc /2 ?udc /2 udc udc /2
1 1 1 udc udc udc udc 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 udc udc /2 ?udc /2 udc /2 ?udc ?udc /2
0 1 0 0 udc 0 udc /2 udc /2 ?udc /2 udc ?udc /2
0 1 1 0 udc udc udc 0 0 0 ?udc
Tab.1 Switch status of new single-phase five-level PWM rectifier
Fig.2 Bode diagram of resonant controller and quasi-resonant controller
Fig.3 PIR control diagram of current inner loop
Fig.4 Block diagram of sliding mode PIR control system of new five-level PWM rectifier
参数/单位 参数值
网侧电压us/V 310
等效输入电感Ls/mH 3.5
等效电阻Rs 0.05
耦合电感Lb/mH 3
耦合电感Lc/mH 3
开关频率fs/Hz 3000
直流侧支撑电容Cd/F 4.5
直流侧负载RL 40
直流侧电压给定值u*dc/V 400
Tab.2 Simulation parameters of single-phase five-level rectifier system
Fig.5 Simulation waveforms of line voltage and line current in steady state
Fig.6 FFT analysis result of line current in steady state
Fig.7 Simulation waveforms ofd-axis andq-axis currents in sudden load change condition
Fig.8 Simulation waveforms of output DC voltage under condition of startup and sudden load change of new single-phase five-level rectifier system
Fig.9 Semi-physical experiment system of new single-phase five-level PWM rectifier
Fig.10 Experimental waveforms of main voltage and line current in steady state
Fig.11 Experimental waveforms of input voltage in steady state
Fig.12 Experimental waveforms of DC-link voltage and line current in sudden load change condition
[1]   杨晓峰, 林智钦, 郑琼林, 等 模块组合多电平变换器的研究综述[J]. 中国电机工程学报, 2013, 33 (6): 1- 15
YANG Xiao-feng, LIN Zhi-qin, ZHENG Qiong-lin, et al A review of modular multilevel converters[J]. Proceedings of the CSEE, 2013, 33 (6): 1- 15
[2]   周洋, 胡鹏飞, 江道灼, 等 模块化多电平换流器改进最近电平调制策略[J]. 浙江大学学报: 工学版, 2015, 49 (8): 1522- 1528
ZHOU Yang, HU Peng-fei, JIANG Dao-zhuo, et al Improved nearest level modulation strategy for modular multilevel converters[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (8): 1522- 1528
[3]   王奎, 郑泽东, 李永东 基于新型模块化多电平变换器的五电平PWM整流器[J]. 电工技术学报, 2011, 26 (5): 34- 38
WANG Kui, ZHENG Ze-dong, LI Yong-dong A five-level PWM rectifier based on new modular multilevel converter[J]. Transactions of China Electrotechnical Society, 2011, 26 (5): 34- 38
[4]   高志刚, 柯龙 一种单相四象限五电平变换器[J]. 电机与控制学报, 2016, 20 (2): 43- 51
GAO Zhi-gang, KE Long Single-phase four-quadrant five-level converter[J]. Electric Machines and Control, 2016, 20 (2): 43- 51
[5]   KOURRO S, MALINOWSIKI M, GOPAKUMAR K, et al Recent advances and industrial applications of multilevel converters[J]. IEEE Transactions on Industrial Electronics, 2010, 57 (8): 2553- 2580
doi: 10.1109/TIE.2010.2049719
[6]   SALMON J, KNIGHT A, EWANCHUK J. Single phase multi-level PWM inverter topologies using coupled inductors [C]// Power Electronics Specialists Conference. Rhodes: IEEE, 2008.
[7]   ZHAO L, GE Q, LI Z, et al. A novel single-phase nine-level rectifier with coupled inductors [C]// International Conference on Electrical Machines and Systems. Busan: IEEE, 2014.
[8]   杨立永, 杨烁, 张卫平, 等 单相PWM整流器改进无差拍电流预测控制方法[J]. 中国电机工程学报, 2015, 35 (22): 5842- 5850
YANG Li-yong, YANG Shuo, ZHENG Wei-ping, et al The improved deadbeat predictive current control method for single-phase PWM rectifiers[J]. Proceedings of the CSEE, 2015, 35 (22): 5842- 5850
[9]   邓知先, 宋文胜, 曹梦华 单相PWM整流器模型预测电流控制算法[J]. 中国电机工程学报, 2016, 36 (11): 2996- 3004
DENG Zhi-xian, SONG Wen-sheng, CAO Meng-hua A model predictive current control scheme for single-phase PWM rectifiers[J]. Proceedings of the CSEE, 2016, 36 (11): 2996- 3004
[10]   李萍, 王久和 新型三电平单向混合整流器电流控制策略分析[J]. 电力系统及其自动化学报, 2018, 30 (12): 40- 47
LI Ping, WANG Jiu-he Analysis of current control strategy for novel three-level unidirectional hybrid rectifier[J]. Proceedings of the CSU-EPSA, 2018, 30 (12): 40- 47
doi: 10.3969/j.issn.1003-8930.2018.12.006
[11]   陆翔, 谢运祥, 桂存兵, 等 基于多滑模变结构控制的三相PWM整流器非线性控制[J]. 电工技术学报, 2016, 31 (4): 79- 87
LU Xiang, XIE Yun-xiang, GUI Cun-bing, et al Nonlinear control of three-phase PWM rectifier based on multi-sliding mode variable structure control[J]. Transactions of China Electrotechnical Society, 2016, 31 (4): 79- 87
doi: 10.3969/j.issn.1000-6753.2016.04.012
[12]   黄凯征, 汪万伟, 王旭 基于滑模控制的PWM整流器建模与仿真[J]. 电网技术, 2009, 33 (8): 18- 23
HUANG Kai-zheng, WANG Wan-wei, WANG Xu Modeling and simulation of PWM rectifier based on sliding-mode control[J]. Power System Technology, 2009, 33 (8): 18- 23
[13]   全宇, 年珩 非理想电网下双馈感应发电机谐振滑模控制[J]. 浙江大学学报: 工学版, 2014, 48 (4): 575- 580
QUAN Yu, NIAN Heng Resonant-based sliding mode control of doubly-fed induction generator connected to unideal grid[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (4): 575- 580
[14]   张馨予, 张钢, 钱江林, 等 具有低次谐波抑制能力的PIR控制器设计[J]. 电工技术学报, 2016, 31 (Suppl.2): 19- 27
ZHANG Xin-yu, ZHANG Gang, QIAN Jiang-lin, et al Design of PIR controller with the ability of low harmonic damping[J]. Transactions of China Electrotechnical Society, 2016, 31 (Suppl.2): 19- 27
[15]   支琴, 吴映阳, 金之俭, 等 基于比例积分谐振调节的光伏并网逆变器电流控制方法[J]. 上海交通大学学报, 2018, 52 (12): 1642- 1648
ZHI Qin, WU Ying-yang, JIN Zhi-jian, et al Current control strategy for photovoltaic grid-connected inverter based on PIR regulator[J]. Journal of Shanghai Jiaotong University, 2018, 52 (12): 1642- 1648
[16]   宋平岗, 林家通, 李云丰, 等 采用MMC-RPC治理牵引供电系统负序和谐波的PIR控制策略[J]. 电工技术学报, 2017, 32 (12): 108- 116
SONG Ping-gang, LIN Jia-tong, LI Yun-feng, et al PIR control strategy on compensation of negative sequence and harmonic for railway power supply system using MMC-RPC[J]. Transactions of China Electrotechnical Society, 2017, 32 (12): 108- 116
[17]   刘秉, 宋文胜 基于虚拟信号反馈算法的单相PWM整流器DQ电流解耦控制[J]. 中国电机工程学报, 2018, 38 (15): 4504- 4513
LIU Bing, SONG Wen-sheng DQ current decoupling control of single-phase PWM rectifiers based on virtual signal feedback algorithm[J]. Proceedings of the CSEE, 2018, 38 (15): 4504- 4513
[1] Jing LI,Chen WANG,Jia-xu ZHANG. Wheel slip tracking control of vehicle based on adaptive fast terminal sliding mode control method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 169-176.
[2] Jian LI,Wen-cheng TANG. Sliding mode control for ball screw drives based on H∞ theory[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1497-1504.
[3] Zhao-meng CHEN,Xiao-jun ZHOU,Chen-long YANG,Hao-liang LV,Jie-chao WEI. Emergency braking control strategy for high speed electric drive tracked vehicle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 442-449.
[4] Yi-jia ZHAO,Yun-jian WANG,Yao-dong WANG,Wei ZHANG. Power prediction control of ISOP based on single phase shift control[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 160-168.
[5] WAGN Yao-yao, GU Lin-yi, CHEN Bai, WU Hong-tao. Nonsingular terminal sliding mode control of underwater vehicle-manipulator system[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 934-942.
[6] ZHOU Hua, CHEN Li, DUAN Deng-ping. Sliding mode control of trajectory tracking for underactuated aerostat[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1412-1420.
[7] LI Guo-fei, TENG Qing-fang, WANG Chuan-lu, ZHANG Ya-qin. FCS-MPC strategy with sliding mode control for PMSM systems driven by four-switch inverters[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 620-627.
[8] GUO Fan, WEI Jian-hua, ZHANG Qiang, XIONG Yi. Hybrid position/pressure control of hydraulic press based on cascade controller[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 1937-1947.
[9] PAN Ning, YU Liang yao, ZHANG Lei, SONG Jian, ZHANG Yong hui. Anti-lock braking control in coordinated braking system considering braking comfort[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 9-16.
[10] ZHOU Feng, GU Lin yi, LUO Gao sheng, CHEN Zong heng. Adaptive backstepping sliding mode control for electro hydraulic proportional propulsion system[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1111-1118.
[11] LUO Ci yong, WEI Xin xin, WANG Wei yao, NAN Hang. Zero voltage and zero current buck converter with soft switching using coupled inductor[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 663-670.
[12] WANG Fei, GUAN Cheng, XIAO Yang, LI Wei. Pressure sliding mode control of hydraulic excavator boom potential energy recovery[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 201-208.
[13] CHEN Xiao, Chen Heng-Lin, CHEN Guo-zhu. Three-phase four-wire shut active power filter with coupled inductors[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1529-1536.
[14] WANG Yao-yao, GU Lin-yi, GAO Ming, JIA Xian-jun, ZHU Kang-wu. Nonsingular fast terminal sliding mode control for underwater vehicles[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1541-1551.
[15] FANG Qiang, ZHOU Qing-hui, FEI Shao-hua, MENG Xiang-lei, BA Xiao-fu, ZHANG Yan-ni, KE Ying-lin. Pneumatic servo control system design for pressure foot of an end-effector[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1442-1450.