Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Mechanical Engineering     
Pressure sliding mode control of hydraulic excavator boom potential energy recovery
WANG Fei1,2, GUAN Cheng1, XIAO Yang1, LI Wei1
1. Mechanical Design Institute, Zhejiang University, Hangzhou 310027, China; 2. School of Mechanical and Electrical Engineering, Ningbo Dahongying University, Ningbo 315175, China
Download:   PDF(2201KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  
A new boom potential energy recovery schema for hydraulic excavator was proposed to maintain the stability of boom lowering down velocity based on the pressure super twisting sliding mode control of the upper side on excavator boom cylintlers. The mathematical models of the key hydraulic elements were introduced, and the necessary stability condition of boom lowering down was discussed. The lowering down speed disturbance caused by the external force was analyzed for the upper side pressure control and the lower side pressure control of excavator boom cylinders. The super twisting sliding mode controller was presented and the stability of them was proved for the two schemas. Simulation in AMESIM was conducted. Results show that both the upper side and the lower side excavator boom cylinder pressure control of the potential energy recovery are stable. The upper side pressure control method has better anti disturbance ability, and it is much object to set the control object.


Published: 01 February 2016
CLC:  TH 137  
Cite this article:

WANG Fei, GUAN Cheng, XIAO Yang, LI Wei. Pressure sliding mode control of hydraulic excavator boom potential energy recovery. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 201-208.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.02.002     OR     http://www.zjujournals.com/eng/Y2016/V50/I2/201


挖掘机动臂势能回收系统的压力滑模控制

为了实现混合动力液压挖掘机动臂势能回收,保证动臂下降过程的平稳性,提出基于Super twisting滑模控制的以稳定动臂液压缸上腔压力为目标的能量回收控制方法.在建立关键元件的数学模型讨论能量回收时挖掘机动臂下降的平稳条件的基础上,针对上腔压力控制和下腔压力控制2种情况,对比分析外力扰动对下降速度的影响;设计Super twisting滑模能量回收控制器实现压力的稳定控制,证明压力稳定滑模控制器的稳定性.通过AMESIM进行系统仿真,结果表明:以下腔压力为控制目标和以上腔压力为控制目标的液压挖掘机动臂势能回收控制方法能够满足动臂势能回收时平稳下降,其中,以上腔压力为控制目标有较好的抗外力扰动能力,且更容易确定控制目标.

[1] 管成,林名润,吴超,等.油液混合动力挖掘机动臂势能回收系统[J].计算机集成制造系统,2012,18(3): 583-589.
GUAN Cheng, LIN Ming run, WU Chao, et al. Recovery system of boom energy in hydraulic hybrid excavators [J]. Computer Integrated Manufacturing Systems, 2012,18(3): 583-589.
[2] 裴磊,管成,邱清盈.混合动力挖掘机动臂势能回收系统研究[J].机床与液压,2009,37(3): 64-67.
PEI Lei, GUAN Cheng, QIU Qing ying. Research of boom energy recovery system in hybrid excavator [J]. Machine Tool & Hydraulics, 2009,37(3): 64-67.
[3] 赵丁选,陈明东,戴群亮,等.油液混合动力液压挖掘机动臂势能回收系统[J].吉林大学学报:工学版,2011,41(1): 150-154.
ZHAO Ding xuan, CHEN Ming dong, DAI Qun liang. System of arm potential energy recovery in hybrid hydraulic excavators [J]. Journal of Jilin University: Engineering and Technology Edition, 2011, 41(1): 150-154.
[4] 林潇,管成,裴磊,等.混合动力液压挖掘机动臂势能回收系统[J].农业机械学报,2009,40(4): 96-101.
LIN Xiao, GUAN Cheng, PEI Lei, et al. Research on the system of arm potential energy recovery in hybrid hydraulic excavators [J]. Transactions of the Chinese Society of Agricultural Machinery, 2009,40(4): 96-101.
[5] 王庆丰.油电混合动力挖掘机的关键技术研究[J].机械工程学报,2013,49(20):123-129.
WANG Qing feng. Research on key technology of oil electric hybrid excavator [J]. Journal of Mechanical Engineering, 2013, 49(20): 123-129.
[6] WANG Tao, WANG Qing feng, LIN Tian liang. Improvement of boom control performance for hydraulic excavator with potential energy recovery [J]. Automation in Construction, 2013, 30: 161-169.
[7] 管成,王飞,肖扬,等.液压挖掘机能量优化系统:中国,CN102561451A[P]. 2012-0711.
GUAN Chen, WANG Fei, XIAO Yang, et al. Hydran, lic excavator engergy op tim alsystem: China: CN102561451A[P]. 2002-0711.
[8] GUAN Cheng, PAN Shuang xia. Adaptive sliding mode control of eletro hydraulic system with nonlinear parameters [J]. Control Engineering Practice, 2008, 16(11): 1275-1284.
[9] LEVANT A. Principles of 2 sliding mode design [J]. Automatica, 2007, 43(4): 576-586.
[10] LEVANT A. Robust exact differentiation via sliding mode technique [J]. Automatica, 1998, 34(3): 379-384.
[11] SHTESSEL Y. EDWARDS C, FRIDMAN L. Sliding mode control and observation [M]. New York: Springer, 2014.
[12] UTKIN V, GULDNER J, SHI J. Sliding mode control in electro mechanical systems: sencond edition [M]. Boca Raton: Taylor & Francis Group, LLC, 2009, 54-62.

[1] OUYANG Xiao-ping, ZHAO Tian-fei, LI Feng, YANG Shang-bao, ZHU Ying, YANG Hua-yong. Integral variable PI control on flow load simulator of aircraft hydraulic system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1111-1118.
[2] DING Ru-qi, XU Bing, ZHANG Jun-hui. Coupling property of pressure and velocity compound control in individual metering systems[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1126-1134.
[3] ZHANG Qiang, WEI Jian-hua, SHI Wen-zhuo. Blank holder force control of hydraulic cushion with soft relief fuzzy PID controller[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1143-1152.
[4] NI Jing, FENG Guo-dong, WANG Zhi-qiang, GAO Dian-rong, XU Ming. Optimization design of internal curve type water hydraulic motor with plain flow distribution[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 946-953.
[5] DING Jia-xin, CHEN Ying-long, ZHOU Hua. Effect on residual wall thickness of parts with floating core injection of water-assisted injection molding[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 937-945.
[6] XU Bing, SU Qi, ZHANG Jun-hui, LU Zhen-yu. Analysis for drive circuit and improved current controller for proportional amplifier[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 800-806.
[7] DU Rui long, CHEN Ying long, ZHOU Hua, WANG Jia. New distributing mechanism for high speed single-piston axial piston pump[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1902-1910.
[8] WANG Jian sen, LIU Yao lin, JI Hong, WANG Peng fei. Transient simulation on flow force of non-circular opening spool valve[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1922-1926.
[9] HU Xiao dong, GU Lin yi, ZHANG Fan meng. High-speed on/off valves applied in digital displacement motor[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1551-1560.
[10] QUAN Ling xiao, LI Dong, LIU Song, LI Chang chun, KONG Xiang dong. Influence factors analysis on frequency domain characteristics of expansion loop[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1065-1072.
[11] ZHAO Peng yu, CHEN Ying long, ZHOU Hua, YANG Hua yong. Potential energy recovery and energy management strategy of hydraulic hybrid excavator[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 893-901.
[12] LIAO Xiang ping, GONG Guo fang, PENG Xiong bin, WU Wei qiang. Jam breakout characteristic of tunnel boring machine based on hydro viscous drive mechanism[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 902-912.
[13] WANG Xuan, TAO Jian feng, ZHANG Feng rong, WU Ya jin, LIU Cheng liang. Precision position control of pump controlled asymmetric cylinder[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 597-602.
[14] ZHAO Peng yu, CHEN Ying long, SUN Jun, ZHOU Hua. Modeling and simulation of well test and production test system based on hydraulic balance[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 650-656.
[15] LIU Tong, GONG Guo fang, PENG Zuo, WU Wei qiang, PENG Xiong bin. Hybrid cutterhead driving system for TBM based on hydraulic transformer[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 419-427.