Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Mechanical Engineering     
Jam breakout characteristic of tunnel boring machine based on hydro viscous drive mechanism
LIAO Xiang ping, GONG Guo fang, PENG Xiong bin, WU Wei qiang
State Key Laboratory of Fluid Power Transmission and Control,Zhejiang University,Hangzhou 310027,China
Download:   PDF(2269KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Tunnel boring machine(TBM) get jammed by hard rock in the process of tunneling, which causes great economic losses to enterprises. According to the analysis of several existing driving system , a new TBM cutter driving system based on the hydroviscous clutch (HVC) was proposed to improve the breakout torque for TBM without increasing the installed power of TBM. An oil cooling system for HVC was designed according to the heating problem analysis during the the process of jam breakout . An AMESim model of HVC was established based on the oil film bearing capacity and wet clutch. On the basis of the simulation model for the new TBM cutter driving system,the jam breakout mechanism of TBM based on hydroviscous drive was investigated, the influence of temperature rising and oil film thickness control method on the jam breakout characteristic of TBM was studied, the optimized control strategy for the proportional relief valve was proposed. Results show that the driving torque can be twice of the load torque and the duration time can last for 79 s by the optimization of oil film thickness curves of HVC, which may properly meet the engineering requirement of large breakout torque with long duration for TBM.



Published: 14 January 2017
CLC:  TH 137  
Cite this article:

LIAO Xiang ping, GONG Guo fang, PENG Xiong bin, WU Wei qiang. Jam breakout characteristic of tunnel boring machine based on hydro viscous drive mechanism. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 902-912.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008973X.2016.05.013     OR     http://www.zjujournals.com/eng/Y2016/V50/I5/902


基于黏性耦合机理的TBM刀盘脱困特性

针对全断面硬岩掘进机(TBM)在实际工程应用中的卡机问题,对比分析现有TBM刀盘驱动系统的优缺点,设计基于液体黏性离合器(HVC)的新型TBM刀盘驱动方案,可实现在不增加系统装机功率的前提下提升TBM脱困扭矩.针对TBM脱困过程的发热问题,设计液体黏性离合器的油温冷却系统.根据油膜承载力及湿式离合器模型,构建液体黏性离合器的AMESim模型.基于新型TBM刀盘驱动系统仿真模型,研究黏性耦合作用下的TBM刀盘脱困机理,得到温升、离合器油膜厚度控制因素对TBM脱困性能的影响规律,提出电液比例溢流阀的控制策略.结果表明:通过优化设计油膜厚度控制曲线,可以实现脱困扭矩为2倍额定扭矩,持续时间长达79 s的扭矩曲线,较好地满足TBM脱困对于脱困扭矩大、持续时间长的工程需求.

[1] 杜彦良,杜立杰. 全断面岩石隧道掘进机—系统原理与集成设计[M].武汉:华中科技大学出版社,2011:110.
[2] 宋天田,肖正学,苏华友,等. 上公山 TBM 施工 2·22 卡机事故工程地质分析[J]. 岩石力学与工程学报,2004,23(Supplement1) :45444546.
SONG Tiantian, XIAO Zhengxue, SU Huayou, et al. Engineering geological analyses on 222 blockage accident in TBM construction of shanggongshan tunnel [J]. Chinese Journal Of Rock Mechanics And Engineering, 2004,23(Supplement1): 45444546.
[3] 尚彦军,史永跃,曾庆利,等. 昆明上公山隧道复杂地质条件下 TBM 卡机及护盾变形问题分析和对策[J]. 岩石力学与工程学报,2005,24( 21) :38583863.
SHANG Yanjun, SHI Yongyue, ZENG Qingli et al. TBM jamming and deformation in complicated geological conditions and engineering measures.[J]. Chinese Journal Of Rock Mechanics And Engineering, 2005,24( 21) :38583863.
[4] SHANG Y J,XUE J H,WANG S J,et al. A case history of tunnel boring machine jamming in an interlayer shear zone at the Yellow River Diversion Project in China [J]. Engineering Geology,2004,71(3):199211.
[5] SHANG Y J,SHI Y Y,YIN J T. Weak rock behaviors contributing to TBM block accidents in the Shanggongshan Tunnel of Kunming [C]∥ Konecny P ed. Impact of Human Activity on the Geological Environment,Proceedings of Eurock 2005. [S. l.]:Brno,Czech Republic,2005: 523527.
[6] SHANG Y J,ZENG Q L,XUE J H,et al. Analysis of one TBM jamming accident in tunneling for water diversion and supply project in China [C]∥ Ohnishi Y,Aoki K ed. Proceedings of the ISRM International Symposium 3rd ARMS. Rotterdam : Millpress Rotterdam Netherlands,2004: 685688.
[7] 王江. 引水隧洞双护盾TBM 卡机分析及脱困技术[J].隧道建设,2011,31(6):364368.
WANG Jiang. Analysis on jamming of Doubleshield TBM in construction of water driversion tunnel and jamming releasing technology[J]. Tunnel Construction, 2011, 31(6):364368.
[8] GOEL R K,JETHWA J L,PATHANKAR A G. Indian experience with Q and RMR system [J]. Tunnelling and Underground Space Technology,1995,10(1):97109.
[9] DALGIC S. Tunneling in fault zones , Tuzla tunnel , Turkey [J]. Tunnelling and Underground Space Technology,2003,18(4):453465.
[10] KAISER P K, MCCREATH D R. Rock mechanics considerations for drilled or bored excavations in hard rock[J]. Tunnelling and Underground Space Technology,1994,9(4):425437.
[11] 周赛群. 全断面硬岩掘进机(TBM)驱动系统的研究[D]. 杭州:浙江大学,2008:4751.
ZHOU Saiqun. Study on drive system of the Fullface rock tunnel boring machine[D]. Hangzhou:Zhejiang University, 2008:4751.
[12] 洪啸.TBM刀盘驱动方案与试验台相关设计[D]. 杭州:浙江大学,2014:16-17.
HONG Xiao. TBM cutterhead driver scheme and test bench related design [D]. Hangzhou:Zhejiang University, 2014:16-17.
[13] 谢海波,哄啸,赵阳,等. 液体黏性离合器在全断面硬岩掘进机刀盘驱动中的运用[J].机械工程学报,2014,50(21):6975.
XIE Haibo, HONG Xiao, ZHAO Yang ,et al. Application of Hydroviscous driver in TBM cutterhead driving technology[J]. Journal Of Mechanical Engineering, 2014, 50(21):69-75.
[14] 廖林清,张东方,屈翔,等. 基于AMESim的DCT车辆起步于换挡过程仿真分析[J].重庆理工大学学报:自然科学,2011,25(1):5-11.
LIAO Linqing, ZHANG Dongfang, QU Xiang, et al. Simulation on the startup and shift process of Dual clutch transmission vehicle based on AMESim [J], Journal of Chongqing University of Technology∶Natural Science,2011,25(1):5-11.
[15] YAO Shouwen, CUI Hongwei, YAN Qingdong,et al. Research on the PID parameters and its control characteristics for hydroviscous clutch based on AMESim [J]. Hydromechtronics Egineering, 2012,40(24):69-75.
[16] 魏建华,杜恒,方向,等. 基于 ADAMS / Simulink / AMESim 的油气悬架道路友好性分[J]. 农业机械学报,2010,41( 10) :11-17.
WEI Jianhua,DU Heng,FANG Xiang,et al. Roadfriendliness of interconnected hydropneuma tic suspension based on ADAMS /Simulink / AMESim[J]. Transactions of the Chinese Society for Agricultural Machinery,2010,41( 10) :11-17.
[17] 赵阳,哄啸.TBM刀盘脱困驱动成果仿真研究[J]. 机床与液压,2014,42(19):123-126.
ZHAO Yang, HONG Xiao. Simulation research of breakout process of TBM cutterhead Driver[J]. Machine Tool and Hydraulics, 2014,42(19):123-126.
[18] 刘统,龚国芳,张震,等. TBM试验台刀盘混合驱动系统设计与仿真分析[J].工程设计学报,2015,22(5):438-444.
LIU Tong,GONG Guofang,ZHANG Zhen,et al. Design and simulation analysis of hybrid cutterhead driving system for TBM test bed [J].Journal of Zhejiang University Engineering Science, 2015, 22(5):438-444.
[19] 魏宸官,赵家象. 液体黏性传动技术[M]. 北京:国防工业出版社,1996:51-52.
[20] 廖湘平,龚国芳,王鹤,等. 双活塞液黏调速离合器动态特性[J],农业机械学报,2014,45(7):16.
LIAO Xiangping,GONG Guofang, WANG He,et al. Dynamic performance of hydroviscous drive clutch with doublepiston [J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(7): 16.
[21] 黄家海,邱敏秀,方文敏. 液黏调速离合器中摩擦副间隙内流体传热分析[J].浙江大学学报:工学版 2011,45(11):1934-1940.
HUANG Jiahai, QIU Minxiu, FANG Wenmin. Heat transfer in the gap of friction pairs in hydroviscous drive [J].Journal of Zhejiang University :Engineering Science, 2011, 45(11):1934-1940.
[22] XIE F W,HOU Y F,YANG P. Drive characteristics of viscous oil film considering temperature effect[J]. ASME Journal of Fluids Engineering,2011,133:044-502.
[23] 孟庆睿, 侯友夫.工作油温升对液黏传动调速起动的影响[J].农业机械学报,2010,41(10) :214-218.
MENG Q R, HOU Y F. Effect of working oil temperature rise on hydroviscous drivespeed regulating start [J].Transactions of the Chinese Society for Agricultural Machinery,2010,41(10):214-218.

[1] OUYANG Xiao-ping, ZHAO Tian-fei, LI Feng, YANG Shang-bao, ZHU Ying, YANG Hua-yong. Integral variable PI control on flow load simulator of aircraft hydraulic system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1111-1118.
[2] DING Ru-qi, XU Bing, ZHANG Jun-hui. Coupling property of pressure and velocity compound control in individual metering systems[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1126-1134.
[3] ZHANG Qiang, WEI Jian-hua, SHI Wen-zhuo. Blank holder force control of hydraulic cushion with soft relief fuzzy PID controller[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1143-1152.
[4] NI Jing, FENG Guo-dong, WANG Zhi-qiang, GAO Dian-rong, XU Ming. Optimization design of internal curve type water hydraulic motor with plain flow distribution[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 946-953.
[5] DING Jia-xin, CHEN Ying-long, ZHOU Hua. Effect on residual wall thickness of parts with floating core injection of water-assisted injection molding[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 937-945.
[6] XU Bing, SU Qi, ZHANG Jun-hui, LU Zhen-yu. Analysis for drive circuit and improved current controller for proportional amplifier[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 800-806.
[7] DU Rui long, CHEN Ying long, ZHOU Hua, WANG Jia. New distributing mechanism for high speed single-piston axial piston pump[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1902-1910.
[8] WANG Jian sen, LIU Yao lin, JI Hong, WANG Peng fei. Transient simulation on flow force of non-circular opening spool valve[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1922-1926.
[9] HU Xiao dong, GU Lin yi, ZHANG Fan meng. High-speed on/off valves applied in digital displacement motor[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1551-1560.
[10] QUAN Ling xiao, LI Dong, LIU Song, LI Chang chun, KONG Xiang dong. Influence factors analysis on frequency domain characteristics of expansion loop[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1065-1072.
[11] ZHAO Peng yu, CHEN Ying long, ZHOU Hua, YANG Hua yong. Potential energy recovery and energy management strategy of hydraulic hybrid excavator[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 893-901.
[12] ZHAO Peng yu, CHEN Ying long, SUN Jun, ZHOU Hua. Modeling and simulation of well test and production test system based on hydraulic balance[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 650-656.
[13] WANG Xuan, TAO Jian feng, ZHANG Feng rong, WU Ya jin, LIU Cheng liang. Precision position control of pump controlled asymmetric cylinder[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 597-602.
[14] LIU Tong, GONG Guo fang, PENG Zuo, WU Wei qiang, PENG Xiong bin. Hybrid cutterhead driving system for TBM based on hydraulic transformer[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 419-427.
[15] ZHAO Peng yu, CHEN Ying long, ZHOU Hua. Overview of hydraulic hybrid engineering machinery system and control strategy[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 449-459.