Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Automatic Technology, Communication Engineering     
Adaptive backstepping sliding mode control for electro hydraulic proportional propulsion system
ZHOU Feng, GU Lin yi, LUO Gao sheng, CHEN Zong heng
 1. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China;
2. Guangzhou Marine Geological Survey, Guangzhou 510760, China
Download:   PDF(2173KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A adaptive backstepping sliding mode control method was proposed based on the fact that underwater hydraulic propulsion system controlled by electrohydraulic proportional valves has the control characteristics of strong nonlinearity of the hydraulic system, unknown hydrodynamic parameter, parametric uncertainties susceptible to temperature and pressure changes of the external environment. The controller combined with experimental identification method and the robust adaptive controller design method to analyse complex electrohydraulic system and estimate unknown parameters. The globally asymptotic stability and boundedness of the controll system was guaranteed by using Lyapunov stability theory. Using the hydraulic propulsion system for the 4 500 m Deepsea Working System as the research subject, a comparative study was conducted using the control method presented in this paper and PID controller. Both the simulation results and the test results indicate that the proposed controller with strong robustness can track the desired reference trajectory of thruster speed with satisfied dynamic performance and steady accuracy. The modified parameter adaptive laws can also guarantee the boundedness of the estimated parameters.



Published: 01 June 2016
CLC:  TP 273  
Cite this article:

ZHOU Feng, GU Lin yi, LUO Gao sheng, CHEN Zong heng. Adaptive backstepping sliding mode control for electro hydraulic proportional propulsion system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1111-1118.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008973X.2016.06.014     OR     http://www.zjujournals.com/eng/Y2016/V50/I6/1111


电液比例式推进系统的自适应反演滑模控制

 针对电液比例阀驱动的水下推进系统存在液压系统强非线性、易受外界温度压力以及水动力性能变化引起的参数不确定性的问题,提出一种自适应反演滑模控制方法.该方法结合实验辨识和自适应参数控制器设计方法分别对电液比例复杂耦合系统和不确定系统参数进行简化分析和在线估计,使用李雅普诺夫稳定性理论保证了系统全局渐近稳定以及系统状态的有界性.以国家发展高科技计划4 500 米级深海作业系统-“海马号”ROV的螺旋桨推进系统为研究对象,使用提出的控制方法与传统PID控制器进行对比试验.仿真和水池试验结果表明,所设计的自适应反演滑模控制器对参数变化以及未知外界干扰具有较强的鲁棒性,可以很好地跟踪螺旋桨转速参考轨迹,获得较好的稳态控制精度和动态性能;同时修正后的参数估计能够保证在外界未知干扰下估计参数的有界性.

[1] DEWIJS B. AUV/ROV propulsion thrusters [C]∥OCEANS 2000 MTS/IEEE Conference and Exhibition. Providence: IEEE, 2000: 173-176.
[2] 蒋新松.水下机器人[M].沈阳:辽宁科学技术出版社, 2000.
[3] LEABOURNE K N, ROCK S M, FLEISCHER S D. Station keeping of an ROV using vision technology [C]∥OCEANS 97 MTS/IEEE Conference Proceedings. Halifax IEEE, 1997: 634-640.
[4] 吴根茂,邱敏秀.实用电液比例技术[M].杭州:浙江大学出版社,1993:29.
[5] 方锦辉,孔晓武,魏建华.伺服比例阀的非线性建模和仿真[J].浙江大学学报:工学版,2014,48(5): 784-789.
FANG Jinhui, KONG Xiaowu, WEI Jianhua. Nonlinear modeling of validation of a servosolenoid valve [J]. Journal of Zhejiang University: Engineering Science, 2014, 48(5): 784-789.
[6] VAUGHAN N D, GAMBLE J B. The modeling and simulation of a proportional solenoid valve [J]. ASME Journal of Dynamic Systems, Measurement and Control, 1996, 118(1): 120-125.
[7] CRISTOFORI D, VACCA A. The modeling of electrohydraulic proportional valves [J]. Journal of Dynamic Systems, Measurement and Control, 2012, 134(2): 108-120.
[8] 李其朋,丁凡,王传礼.耐高压双向比例电磁铁的研究[J].浙江大学学报:工学版,2006,40(2):322-325.
LI Qipeng, DING Fan, WANG Chuanli. Study of high pressure bidirectional proportional solenoid [J]. Journal of Zhejiang University: Engineering Science, 2006, 40(2): 322-325.
[9] YOERGER D R, SLOTINE J J E. Robust trajectory control of underwater vehicles [J]. IEEE Journal ofOceanic Engineering, 1985, 10(4): 462-470.
[10] YOERGER D R, COOKE J G, SLOTINE J J E. The influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design [J]. IEEE Journal of Oceanic Engineering, 1990, 15(3): 167-178.
[11] BESSA W M, DUTRA M S, KREUZER E. Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller [J]. Robotics and Autonomous Systems, 2008, 56(8): 670-677.
[12] JAVADIMOGHADDAM J, BAGHERI A. An adaptive neurofuzzy sliding mode based genetic algorithm control system for under water remotely operated vehicle [J].Expert Systems with Applications, 2010, 37(1): 647-660.
[13] YUN S M,YUN D W,KIM H B, et al. Proportional pressure reducing valve for clutch control system [C]∥Control Automation and Systems. KINTEX: IEEE 2010: 1200-1204.
[14] YAO G W, LIN M Y. Simulation research of proportional pressurereducing valve [C] ∥ Advanced Technology of Design and Manufacture. Beijing: 2010:121-126.
[15] 周锋,顾临怡,罗高生.用于水下推进系统的先导比例减压阀的稳定性[J].浙江大学学报:工学版,2015,49(11): 2047-2053.
ZHOU Feng, GU Linyi, LUO Gaosheng. Stability of pilotoperated proportional pressure reducing valve used in underwater propulsion system [J]. Journal of Zhejiang University: Engineering Science, 2015, 49(1): 2047-2053.
[16] HEALEY A J, ROCK S M, MILES D. Toward an improved understanding of thruster dynamics for underwater vehicles [J]. IEEE Journal of Oceanic Engineering, 1995, 20(4): 354-361.
[17] KRISTIC M, KOKOTOVIC I K P. Nonlinear andAdaptive control design [M]. New York: John Wiley and Sons, 2005: 21-25.
[18] SLOTINE J J E, LI W P. Applied nonlinear control [M]. EagleWood Cliffs: Prentice Hall,1991: 49-65.
[19] YAO Bin. Adaptive Robust Control of Nonlinear Systems with Application to Control of Mechanical Systems [D]. University of California at Berkeley, 1996.
[20] YAO Bin. Desired Compensation Adaptive Robust Control [J]. Journal of Dynamic Systems, Measurement and Control. 2009(131): 06100017.
[21] 罗高生,顾临怡,李林.基于鲁棒观测器的肘关节鲁棒自适应控制[J].浙江大学学报:工学版,2014,48(10): 1758-1766.
LUO Gaosheng, GU Linyi, LI Lin. Research on robust output feedback adaptive control of 7function hydraulic manipulator elbow based on robust observer [J]. Journal of Zhejiang University: Engineering Science, 2014, 48(10): 1758-1766.
[22] WHITCOMB L L, YOERGER D R. Preliminary experiments in modelbased thruster control for underwater vehicle positioning [J]. IEEE Journal of Oceanic Engineering, 1999, 24(4):495-506.

[1] WANG Qing, YU Xiao guang, Qiao Ming jie, ZHAO An an, CHENG Liang, LI Jiang xiong, KE Ying lin. Rapid calibration based on SQP algorithm for coordinate frame of localizers[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 319-327.
[2] JIA Chi qian, FENG Dong qin. Security assessment for industrial control systems based on fuzzy analytic hierarchy process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 759-765.
[3] JIN Xin, LIANG Jun. Multivariable offset free model predictive control in dynamic PLS framework[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 750-758.
[4] FEI Shao hua, LIU Dan, QIAO Ming jie, ZHANG Ming,FANG Qiang. Synchronous control system design of dual drive end frame executed platform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 85-92.
[5] SONG Zhi qiang, ZHOU Xian zhong, LI Hua xiong. Coordinated stalking tracking for multiple unmanned ground vehicles[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2349-2354.
[6] QIU Xiang, SONG Hai yu, YU Li. Bullwhip effect control based on average dwell time method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1909-1915.
[7] WANG Ri jun, BAI Yue, XU Zhi jun, GONG Xun, ZHANG Xin, TIAN Yan tao. Fuzzy self adjusting tracking control based on disturbance observer for airborne platform mounted on multi rotor unmanned aerial vehicle[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 2005-2012.
[8] QIN Zhan-bin, CHEN Fei-fei, JIN Bo, ZHANG Lu-lu. PID auto tuning method for spool position control of electro hydraulic proportional valve[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1503-1508.
[9] SUN Wen-da, LI Ping, FANG Zhou. Time-delay uncertain robust optimal control on unmanned helicopter based on dynamic inversion[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1326-1334.
[10] TAO Guo-liang, ZUO He, LIU Hao. Structure design and motion control of parallel platform driven by pneumatic muscles and air cylinder[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 821-828.
[11] DOU Ya-dong, WANG Qing, LI Jiang-xiong, KE Ying-lin. Data integration for aircraft digital assembly system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 858-865.
[12] LUO Zhong-hai, MENG Xiang-lei, BA Xiao-fu, FEI Shao-hua, FANG Qiang. Design on hybrid force position control of large aircraft components posture alignment platform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 265-274.
[13] LUO Gao-sheng, GU Lin-yi, LI Lin. Robust adaptive control of elbow based on robust observer[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(10): 1758-1766.
[14] FANG Qiang, ZHOU Qing-hui, FEI Shao-hua, MENG Xiang-lei, BA Xiao-fu, ZHANG Yan-ni, KE Ying-lin. Pneumatic servo control system design for pressure foot of an end-effector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1442-1450.
[15] QU Wei-wei, SHI Xin, DONG Hui-yue, FENG Pu-jia,ZHU Ling-sheng, KE Ying-lin. Simulation and test on process of percussive Impact riveting[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1411-1418.