Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Robust adaptive control of elbow based on robust observer
LUO Gao-sheng, GU Lin-yi, LI Lin
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
Download:   PDF(2470KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A robust output feedback adaptive control method based on robust observer was proposed based on the fact that the servo-valve controlled elbow joint of a 7-function hydraulic manipulator with double-screw-pair transmission has the control characteristics of strong nonlinearity of the hydraulic system, parametric uncertainties susceptible to temperature and pressure changes of the external environment, unknown external disturbances, and only position and pressure state feedback. The design method of the backstepping controller was utilized to decouple the uncertain system parameters and unknown states. The robust estimator and robust adaptive controller design method were combined to estimate unknown states and uncertain parameters. The globally asymptotic stability and boundedness of system states were guaranteed by using Lyapunov stability theory. Then the robust control problems of coupled uncertain system parameters and partially unknown states were successfully solved. Using the elbow joint of the 7-function master-slave hydraulic manipulator for the 4 500 meter Deep-sea Working System as the research subject, a comparative study was conducted by using the control method under unknown external disturbances. Experimental results show that the close-loop system with strong robustness can track the desired reference trajectory with satisfied dynamic performance and steady accuracy. The modified parameter adaptive laws can also guarantee the boundedness of the estimated parameters.



Published: 01 October 2014
CLC:  TP 273  
Cite this article:

LUO Gao-sheng, GU Lin-yi, LI Lin. Robust adaptive control of elbow based on robust observer. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(10): 1758-1766.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.10.007     OR     http://www.zjujournals.com/eng/Y2014/V48/I10/1758


基于鲁棒观测器的肘关节鲁棒自适应控制

针对伺服阀控制的、双螺旋副传动的七功能机械手肘关节存在液压系统强非线性、易受外界环境温度和压力变化引起的参数不确定性、外界未知强干扰和仅有位置和油液压力状态反馈的控制特点,提出基于鲁棒观测器的输出反馈鲁棒自适应控制方法.该方法利用反演控制器设计方法对耦合的不确定系统参数和未知状态进行解耦,结合鲁棒观测器和鲁棒自适应控制器设计方法分别对未知状态和不确定参数进行观测和估计,使用李雅普诺夫稳定性理论保证了系统全局渐进稳定的控制性以及系统状态的有界性,解决了同时存在系统参数不确定性和部分未知状态相耦合的鲁棒控制问题.以国家高科技发展计划4 500 m深海作业系统的七功能主从液压机械手肘关节作为研究对象,使用提出的控制方法进行在未知外界干扰下的对比研究.实验结果表明,闭环系统可以很好地跟踪参考轨迹,具有较强的鲁棒性,能够获得令人满意的稳态精度和动态性能;修正后的参数自适应律能够保证在外界未知干扰下估计参数的有界性.

[1] WHATTON J. Fluid power systems [M]. New Jersey: Prentice Hall, 1989: 48-75.
[2] MERRIT H E. Hydraulic control systems [M]. New York: Willey, 1967: 34-67.
[3] 施生达.潜艇操纵性[M].北京:国防工业出版社, 1995: 200-236.
[4] FITZSIMONS P M, PALAZZOLO J J. Part I: modeling of a one-degree-of-freedom active hydraulic mount [J].  Journal of Dynamic Systems, Measurement and Control, 1996, 118(3): 439-442.
[5] FITZSIMONS P M, PALAZZOLO J J. Part II: control[J]. Journal of Dynamic Systems, Measurements and control, 1996, 118(3): 443-448.
[6] ALLEYNE A, HEDRICK J K. Nonlinear adaptive of active suspension [J]. IEEE Transactions on Control Systems Technology, 1995,3: 94-101.
[7] SIROUSSPOUR M R, SALCUDEAN S E. Nonlinear control of hydraulic robots [J]. IEEE Transactions on Robotics and Automation, 2001, 17(2).
[8] WIT C, CANUDAS D, FIXOT N. Adaptive control of robot manipulators via velocity estimated feedback [J]. IEEE Transaction on Automation Control, 1992, 37(8): 1234-1237.
[9] WIT C, CANUDAS D, FIXOT N, et al. Trajectory tracking in robot manipulators via nonlinear estimated state feedback [J]. IEEE Transactions on Robotics and Automation, 1992, 8(1): 138-144.
[10] WIT C, CANUDAS D, SLOTINE J J E. Sliding observers for robot manipulators [J]. Automatica, 1991, 27(5): 859-864.
[11] WIT C, CANUDAS D, ASTROM K J, et al. Computed torque control via nonlinear observers [J]. International Journal of Communication Systems, 1990, 4(6): 443-452.
[12] DAVILA J, FRIDMAN L, LEVANT A. Second-order sliding-mode observer for mechanical systems [J]. IEEE Transactions on Automatic Control, 2005, 50(11): 1785-1789.
[13] DAVILA J, FRIDMAN L. A direct algebraic approach to observer design under switching measurement equations [J]. IEEE Transactions on Automatic Control, 2004, 49(11): 2044-2049.
[14] FILIPESCU A, STANCU A, STAMATESCU G. On-line parameter estimation and adaptive gain smooth sliding observer-controller for robotic manipulator control [C]∥ IEEE International Conference on Control and Automation. Guangzhou: IEEE, 2007.
[15] ZHU K W, GU L Y. A MIMO nonlinear robust controller for work-class ROVs positioning and trajectory tracking control [C]∥IEEE Proceedings of 2011 Chinese Control and Decision. [S.l.]: IEEE, 2011: 2565-2570.
[16] YAO B, XU L. Observer-based adaptive robust control of a class of nonlinear systems with dynamic uncertainties [J]. International Journal of Robust and Nonlinear Control, 2001, 11: 335-356.
[17] FILIPPOV A F. Differential equation with discontinuous right-hand side [J]. Transactions of the American Mathematical Society, 1960, 62: 199.
[18] KRISTIC M, KANELLAKOPOULOS I, KOKOTOVIC P. Nonlinear and adaptive control design [M]. New York: Wiley, 2005: 21-55.
[19] SLOTINE J J E, LI W. Applied nonlinear control [M]. New Jersey: Prentice, 1991: 49-65.
[20] YAO B. Adaptive robust control of nonlinear systems with application to control of mechanical systems [D]. Berkeley: University of California, 1996.
[21] YAO B. Advanced motion control: from classical PID to nonlinear adaptive robust control [J]. The 11th IEEE International Workshop on Advanced Motion Control, Nagaoka: IEEE, 2010: 21-24.
[22] YAO B. Desired compensation adaptive robust control [J]. ASME Journal of Dynamic Systems, Measurement and Control, 2009, 131: 06100017.
[1] WANG Qing, YU Xiao guang, Qiao Ming jie, ZHAO An an, CHENG Liang, LI Jiang xiong, KE Ying lin. Rapid calibration based on SQP algorithm for coordinate frame of localizers[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 319-327.
[2] ZHOU Feng, GU Lin yi, LUO Gao sheng, CHEN Zong heng. Adaptive backstepping sliding mode control for electro hydraulic proportional propulsion system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1111-1118.
[3] JIN Xin, LIANG Jun. Multivariable offset free model predictive control in dynamic PLS framework[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 750-758.
[4] JIA Chi qian, FENG Dong qin. Security assessment for industrial control systems based on fuzzy analytic hierarchy process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 759-765.
[5] FEI Shao hua, LIU Dan, QIAO Ming jie, ZHANG Ming,FANG Qiang. Synchronous control system design of dual drive end frame executed platform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 85-92.
[6] SONG Zhi qiang, ZHOU Xian zhong, LI Hua xiong. Coordinated stalking tracking for multiple unmanned ground vehicles[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2349-2354.
[7] QIU Xiang, SONG Hai yu, YU Li. Bullwhip effect control based on average dwell time method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1909-1915.
[8] WANG Ri jun, BAI Yue, XU Zhi jun, GONG Xun, ZHANG Xin, TIAN Yan tao. Fuzzy self adjusting tracking control based on disturbance observer for airborne platform mounted on multi rotor unmanned aerial vehicle[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 2005-2012.
[9] QIN Zhan-bin, CHEN Fei-fei, JIN Bo, ZHANG Lu-lu. PID auto tuning method for spool position control of electro hydraulic proportional valve[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1503-1508.
[10] SUN Wen-da, LI Ping, FANG Zhou. Time-delay uncertain robust optimal control on unmanned helicopter based on dynamic inversion[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1326-1334.
[11] DOU Ya-dong, WANG Qing, LI Jiang-xiong, KE Ying-lin. Data integration for aircraft digital assembly system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 858-865.
[12] TAO Guo-liang, ZUO He, LIU Hao. Structure design and motion control of parallel platform driven by pneumatic muscles and air cylinder[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 821-828.
[13] LUO Zhong-hai, MENG Xiang-lei, BA Xiao-fu, FEI Shao-hua, FANG Qiang. Design on hybrid force position control of large aircraft components posture alignment platform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 265-274.
[14] FANG Qiang, ZHOU Qing-hui, FEI Shao-hua, MENG Xiang-lei, BA Xiao-fu, ZHANG Yan-ni, KE Ying-lin. Pneumatic servo control system design for pressure foot of an end-effector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1442-1450.
[15] QU Wei-wei, SHI Xin, DONG Hui-yue, FENG Pu-jia,ZHU Ling-sheng, KE Ying-lin. Simulation and test on process of percussive Impact riveting[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1411-1418.